-
CRF&HMM模型——理论
目录
1 CRF模型
2 HMM模型
- CRF模型的输入和输出:
- CRF(Conditional Random Fields),中文称作条件随机场,同HMM一样,它一般也以文本序列数据为输入,以该序列对应的隐含序列为输出。
- CRF模型的作用:
- 同HMM一样,在NLP领域, CRF用来解决文本序列标注问题.如分词,词性标注,命名实体识别。
- CRF模型使用过程简述:
- 首先,CRF模型表示为:lambda = CRF(w1, w2,...,wn),其中w1到wn是模型参数。
- 接着,训练CRF模型,语料是一定数量的观测序列及其对应的隐含序列。
- 同时,需要做人工特征工程,然后通过不断训练求得一组参数,使由观测序列到对应隐含序列的概率最大。
- 训练后,得到具备预测能力的新模型:lambda = CRF(w1, w2,...,wn),其中的模型参数已经改变。
- 之后给定输入序列(×1, ×2. ... xn),经过模型计算 lambda(x1, x2. .... xn) 得到对应隐含序列的条件概率分布。
-
相关阅读:
flutter 下载获取定位的插件报错
区间统计——ST算法
Github每日精选(第34期):Shell中的交互模式gum
《深度学习进阶 自然语言处理》第四章:Embedding层和负采样介绍
C语言大佬的必杀技---宏的高级用法
猿创征文|Android 11.0 Launcher3 时钟动态图标的定制化
STM32F103C8 串口的使用
.NET餐厅管理系统sql数据帮助类执行SQL返回首行首列的值,不存在返回、根据SQL判断是否存在对应的数据、执行SQL返回DataSet数据集
神经网络物联网应用技术学什么
主定理(master定理)
-
原文地址:https://blog.csdn.net/waywardG/article/details/126582458