这篇博客主要讲述模型的调参的一些基本知识,主要两个方面,调参的工具和相应的算法。
Linux 和 macOS
python3 -m pip install --upgrade nni
Docker中使用NNI:
docker pull msranni/nni:latest
Window下安装:
pip install cython wheel
python -m pip install --upgrade nni
演示代码来自官方库:https://github.com/microsoft/nni/blob/master/examples/trials/mnist-pytorch
search_space.json文件,包括所有需要搜索的超参的名称和分布(离散和连续值均可)
{
"batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},
"hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},
"lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
"momentum":{"_type":"uniform","_value":[0, 1]}
}
config.yml文件声明了搜索空间和 Trial 文件的路径。 它还提供其他信息,例如调整算法,最大 Trial 运行次数和最大持续时间的参数。
authorName: pprp #作者名称
experimentName: example_mnist_pytorch # 实验名称
trialConcurrency: 1 # 设置并发数量
maxExecDuration: 1h # 每个trial 最长执行时间
maxTrialNum: 10 # 实验重复运行次数
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json # 搜索空间对应json文件
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE # 指定tuner算法
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 examples1.py # 命令行
codeDir: .
gpuNum: 1 # 使用gpu数目
# 当trainingServicePlatform为local时添加如下语句
localConfig:
useActiveGpu: true # 该参数将允许NNI使用活动的GPU运行任务
maxTrialNumPerGpu: 3 # 该参数指定在同一GPU上可同时进行的最大任务数量
# 当trainingServicePlatform为remote时添加如下语句
machineList:
useActiveGpu: true # 该参数将允许NNI使用活动的GPU运行任务
maxTrialNumPerGpu: 3 # 该参数指定在同一GPU上可同时进行的最大任务数量
# ...以下为你自己的其它的远程配置
导入NNI, 修改代码来从 NNI 获取超参,并返回 NNI 最终结果。
比较重点代码如下:
从Tuner获得参数值
RECEIVED_PARAMS = nni.get_next_parameter()
定期返回指标数据(可选)
nni.report_intermediate_result(metrics)
返回配置的最终性能,如精度、loss等
nni.report_final_result(metrics)
启动
nnictl create --config ./config.yml
import os
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from nni.utils import merge_parameter
from torchvision import datasets, transforms
logger = logging.getLogger('mnist_AutoML')
class Net(nn.Module):
def __init__(self, hidden_size):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, hidden_size)
self.fc2 = nn.Linear(hidden_size, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
break
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args['log_interval'] == 0:
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction='sum').item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
return accuracy
def main(args):
use_cuda = not args['no_cuda'] and torch.cuda.is_available()
torch.manual_seed(args['seed'])
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
data_dir = args['data_dir']
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(data_dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args['batch_size'], shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=1000, shuffle=True, **kwargs)
hidden_size = args['hidden_size']
model = Net(hidden_size=hidden_size).to(device)
optimizer = optim.SGD(model.parameters(), lr=args['lr'],
momentum=args['momentum'])
for epoch in range(1, args['epochs'] + 1):
train(args, model, device, train_loader, optimizer, epoch)
test_acc = test(args, model, device, test_loader)
# report intermediate result
nni.report_intermediate_result(test_acc)## 保存中间的指标结果
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
# report final result
nni.report_final_result(test_acc)## 保存最后的指标结果
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
def get_params():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument("--data_dir", type=str, default='./data', help="data directory") ## 数据目录
parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') ## batch_size
parser.add_argument("--batch_num", type=int, default=None) # 最大的batch数量
parser.add_argument("--hidden_size", type=int, default=512, metavar='N', help='hidden layer size (default: 512)') ## 中间隐层数量
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)')## 学习率
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)')## 学习率动量
parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') ## 一共多少个epochs
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') #随机种子
parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') # 是否使用cuda
parser.add_argument('--log_interval', type=int, default=1000, metavar='N', help='how many batches to wait before logging training status') ## 日志间隔
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
try:
# get parameters form tuner
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(merge_parameter(get_params(), tuner_params))
print(params)
main(params)
except Exception as exception:
logger.exception(exception)
raise