• 【图像分类】2022-CMT CVPR


    【图像分类】2022-CMT CVPR

    论文题目:CMT: Convolutional Neural Networks Meet Vision Transformers

    论文链接:https://arxiv.org/abs/2107.06263

    论文代码:https://github.com/ggjy/cmt.pytorch

    发表时间:2021年7月

    引用:Guo J, Han K, Wu H, et al. Cmt: Convolutional neural networks meet vision transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 12175-12185.

    引用数:67

    1. 简介

    1.1 摘要

    Vision Transformer 已成功应用于图像识别任务,因为它们能够捕获图像中的远程依赖关系。然而,Transformer 和现有的卷积神经网络 (CNN) 在性能和计算成本上仍然存在差距。在本文中,我们的目标是解决这个问题并开发一个网络,该网络不仅可以胜过传统的 Transformer,还可以胜过高性能卷积模型。

    我们提出了一种新的基于 Transformer 的混合网络,利用变压器来捕获远程依赖关系,并利用 CNN 对局部特征进行建模。此外,我们对其进行缩放以获得一系列模型,称为 CMT,与以前的基于卷积和 Transformer 的模型相比,获得了更好的准确性和效率。

    特别是,我们的 CMT-S 在 ImageNet 上实现了 83.5% 的 top-1 准确率,而在 FLOP 上分别比现有的 DeiT 和 EfficientNet 小 14 倍和 2 倍。所提出的 CMT-S 在 CIFAR10 (99.2%)、CIFAR100 (91.7%)、Flowers (98.7%) 和其他具有挑战性的视觉数据集如 COCO (44.3% mAP) 上也能很好地推广,而且计算成本要低得多。

    2. 网络

    2.1 整体架构

    • 首先,输入 Image 进入 CMT Stem,CMT Stem 架构是一个 3×3 卷积、步幅为 2 和一个输出通道为 32 的茎架构来减小输入图像的大小,后接的是另外两个步幅为 1 的 3×3 卷积以获得更好的局部 信息
    • 然后 2 ∗ 2 2*2 22 Conv stride=2 接 CMT Block*3,重复 4 次后 + 全局平均池化 + 全连接 + softmax 的1000 路分类

    image-20220825110434882

    2.2 CMT Block

    image-20220825110611158

    2.3 Lightweight Multi-head Self-attention

    原始的self-attention模块中,输入 X 被线性变换为 query、key、value 再进行计算,运算成本高

    此模块主要功能就是使用深度卷积计算代替了 key 和 value 的计算,从而减轻了计算开销,具体计算过程,可以看一下原文进行参考
    LightAttn ⁡ ( Q , K , V ) = Softmax ⁡ ( Q K ′ T d k + B ) V ′ \operatorname{LightAttn}(\mathbf{Q}, \mathbf{K}, \mathbf{V})=\operatorname{Softmax}\left(\frac{\mathbf{Q} \mathbf{K}^{\prime T}}{\sqrt{d_{k}}}+\mathbf{B}\right) \mathbf{V}^{\prime} LightAttn(Q,K,V)=Softmax(dk QKT+B)V

    3. 代码

    # 2022.06.28-Changed for building CMT
    #            Huawei Technologies Co., Ltd. 
    # Author: Jianyuan Guo (jyguo@pku.edu.cn)
    
    import math
    import logging
    from functools import partial
    from collections import OrderedDict
    
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
    from timm.models.helpers import load_pretrained
    from timm.models.layers import DropPath, to_2tuple, trunc_normal_
    from timm.models.resnet import resnet26d, resnet50d
    from timm.models.registry import register_model
    
    _logger = logging.getLogger(__name__)
    
    
    def _cfg(url='', **kwargs):
        return {
            'url': url,
            'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
            'crop_pct': .9, 'interpolation': 'bicubic',
            'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
            'first_conv': 'patch_embed.proj', 'classifier': 'head',
            **kwargs
        }
    
    
    # A memory-efficient implementation of Swish function
    class SwishImplementation(torch.autograd.Function):
        @staticmethod
        def forward(ctx, i):
            result = i * torch.sigmoid(i)
            ctx.save_for_backward(i)
            return result
    
        @staticmethod
        def backward(ctx, grad_output):
            i = ctx.saved_tensors[0]
            sigmoid_i = torch.sigmoid(i)
            return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
    
    
    class MemoryEfficientSwish(nn.Module):
        def forward(self, x):
            return SwishImplementation.apply(x)
    
    
    class Mlp(nn.Module):
        def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
            super().__init__()
            out_features = out_features or in_features
            hidden_features = hidden_features or in_features
            self.conv1 = nn.Sequential(
                nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True),
                nn.GELU(),
                nn.BatchNorm2d(hidden_features, eps=1e-5),
            )
            self.proj = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, groups=hidden_features)
            self.proj_act = nn.GELU()
            self.proj_bn = nn.BatchNorm2d(hidden_features, eps=1e-5)
            self.conv2 = nn.Sequential(
                nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True),
                nn.BatchNorm2d(out_features, eps=1e-5),
            )
            self.drop = nn.Dropout(drop)
    
        def forward(self, x, H, W):
            B, N, C = x.shape
            x = x.permute(0, 2, 1).reshape(B, C, H, W)
            x = self.conv1(x)
            x = self.drop(x)
            x = self.proj(x) + x
            x = self.proj_act(x)
            x = self.proj_bn(x)
            x = self.conv2(x)
            x = x.flatten(2).permute(0, 2, 1)
            x = self.drop(x)
            return x
    
    
    class Attention(nn.Module):
        def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
                     attn_drop=0., proj_drop=0., qk_ratio=1, sr_ratio=1):
            super().__init__()
            self.num_heads = num_heads
            head_dim = dim // num_heads
            self.scale = qk_scale or head_dim ** -0.5
            self.qk_dim = dim // qk_ratio
    
            self.q = nn.Linear(dim, self.qk_dim, bias=qkv_bias)
            self.k = nn.Linear(dim, self.qk_dim, bias=qkv_bias)
            self.v = nn.Linear(dim, dim, bias=qkv_bias)
            self.attn_drop = nn.Dropout(attn_drop)
            self.proj = nn.Linear(dim, dim)
            self.proj_drop = nn.Dropout(proj_drop)
    
            self.sr_ratio = sr_ratio
            # Exactly same as PVTv1
            if self.sr_ratio > 1:
                self.sr = nn.Sequential(
                    nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio, groups=dim, bias=True),
                    nn.BatchNorm2d(dim, eps=1e-5),
                )
    
        def forward(self, x, H, W, relative_pos):
            B, N, C = x.shape
            q = self.q(x).reshape(B, N, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
    
            if self.sr_ratio > 1:
                x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
                x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
                k = self.k(x_).reshape(B, -1, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
                v = self.v(x_).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
            else:
                k = self.k(x).reshape(B, N, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
                v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
    
            attn = (q @ k.transpose(-2, -1)) * self.scale + relative_pos
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = (attn @ v).transpose(1, 2).reshape(B, N, C)
            x = self.proj(x)
            x = self.proj_drop(x)
            return x
    
    
    class Block(nn.Module):
        def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                     drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, qk_ratio=1, sr_ratio=1):
            super().__init__()
            self.norm1 = norm_layer(dim)
            self.attn = Attention(
                dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                attn_drop=attn_drop, proj_drop=drop, qk_ratio=qk_ratio, sr_ratio=sr_ratio)
            # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
            self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
            self.norm2 = norm_layer(dim)
            mlp_hidden_dim = int(dim * mlp_ratio)
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
            self.proj = nn.Conv2d(dim, dim, 3, 1, 1, groups=dim)
    
        def forward(self, x, H, W, relative_pos):
            B, N, C = x.shape
            cnn_feat = x.permute(0, 2, 1).reshape(B, C, H, W)
            x = self.proj(cnn_feat) + cnn_feat
            x = x.flatten(2).permute(0, 2, 1)
            x = x + self.drop_path(self.attn(self.norm1(x), H, W, relative_pos))
            x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
            return x
    
    
    class PatchEmbed(nn.Module):
        """ Image to Patch Embedding
        """
    
        def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
            super().__init__()
            img_size = to_2tuple(img_size)
            patch_size = to_2tuple(patch_size)
            num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
    
            assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
                f"img_size {img_size} should be divided by patch_size {patch_size}."
    
            self.img_size = img_size
            self.patch_size = patch_size
            self.num_patches = num_patches
    
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
            self.norm = nn.LayerNorm(embed_dim)
    
        def forward(self, x):
            B, C, H, W = x.shape
            # FIXME look at relaxing size constraints
            assert H == self.img_size[0] and W == self.img_size[1], \
                f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
            x = self.proj(x).flatten(2).transpose(1, 2)
            x = self.norm(x)
    
            H, W = H // self.patch_size[0], W // self.patch_size[1]
            return x, (H, W)
    
    
    class CMT(nn.Module):
        def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[46, 92, 184, 368], stem_channel=16,
                     fc_dim=1280,
                     num_heads=[1, 2, 4, 8], mlp_ratios=[3.6, 3.6, 3.6, 3.6], qkv_bias=True, qk_scale=None,
                     representation_size=None,
                     drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None,
                     depths=[2, 2, 10, 2], qk_ratio=1, sr_ratios=[8, 4, 2, 1], dp=0.1):
            super().__init__()
            self.num_classes = num_classes
            self.num_features = self.embed_dim = embed_dims[-1]
            norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
    
            self.stem_conv1 = nn.Conv2d(3, stem_channel, kernel_size=3, stride=2, padding=1, bias=True)
            self.stem_relu1 = nn.GELU()
            self.stem_norm1 = nn.BatchNorm2d(stem_channel, eps=1e-5)
    
            self.stem_conv2 = nn.Conv2d(stem_channel, stem_channel, kernel_size=3, stride=1, padding=1, bias=True)
            self.stem_relu2 = nn.GELU()
            self.stem_norm2 = nn.BatchNorm2d(stem_channel, eps=1e-5)
    
            self.stem_conv3 = nn.Conv2d(stem_channel, stem_channel, kernel_size=3, stride=1, padding=1, bias=True)
            self.stem_relu3 = nn.GELU()
            self.stem_norm3 = nn.BatchNorm2d(stem_channel, eps=1e-5)
    
            self.patch_embed_a = PatchEmbed(
                img_size=img_size // 2, patch_size=2, in_chans=stem_channel, embed_dim=embed_dims[0])
            self.patch_embed_b = PatchEmbed(
                img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
            self.patch_embed_c = PatchEmbed(
                img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
            self.patch_embed_d = PatchEmbed(
                img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3])
    
            self.relative_pos_a = nn.Parameter(torch.randn(
                num_heads[0], self.patch_embed_a.num_patches,
                self.patch_embed_a.num_patches // sr_ratios[0] // sr_ratios[0]))
            self.relative_pos_b = nn.Parameter(torch.randn(
                num_heads[1], self.patch_embed_b.num_patches,
                self.patch_embed_b.num_patches // sr_ratios[1] // sr_ratios[1]))
            self.relative_pos_c = nn.Parameter(torch.randn(
                num_heads[2], self.patch_embed_c.num_patches,
                self.patch_embed_c.num_patches // sr_ratios[2] // sr_ratios[2]))
            self.relative_pos_d = nn.Parameter(torch.randn(
                num_heads[3], self.patch_embed_d.num_patches,
                self.patch_embed_d.num_patches // sr_ratios[3] // sr_ratios[3]))
    
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
            cur = 0
            self.blocks_a = nn.ModuleList([
                Block(
                    dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias,
                    qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i],
                    norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[0])
                for i in range(depths[0])])
            cur += depths[0]
            self.blocks_b = nn.ModuleList([
                Block(
                    dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias,
                    qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i],
                    norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[1])
                for i in range(depths[1])])
            cur += depths[1]
            self.blocks_c = nn.ModuleList([
                Block(
                    dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias,
                    qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i],
                    norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[2])
                for i in range(depths[2])])
            cur += depths[2]
            self.blocks_d = nn.ModuleList([
                Block(
                    dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias,
                    qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i],
                    norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[3])
                for i in range(depths[3])])
    
            # Representation layer
            if representation_size:
                self.num_features = representation_size
                self.pre_logits = nn.Sequential(OrderedDict([
                    ('fc', nn.Linear(self.embed_dim, representation_size)),
                    ('act', nn.Tanh())
                ]))
            else:
                self.pre_logits = nn.Identity()
    
            # Classifier head
            self._fc = nn.Conv2d(embed_dims[-1], fc_dim, kernel_size=1)
            self._bn = nn.BatchNorm2d(fc_dim, eps=1e-5)
            self._swish = MemoryEfficientSwish()
            self._avg_pooling = nn.AdaptiveAvgPool2d(1)
            self._drop = nn.Dropout(dp)
            self.head = nn.Linear(fc_dim, num_classes) if num_classes > 0 else nn.Identity()
            self.apply(self._init_weights)
    
        def _init_weights(self, m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if isinstance(m, nn.Conv2d) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)
    
        def update_temperature(self):
            for m in self.modules():
                if isinstance(m, Attention):
                    m.update_temperature()
    
        @torch.jit.ignore
        def no_weight_decay(self):
            return {'pos_embed', 'cls_token'}
    
        def get_classifier(self):
            return self.head
    
        def reset_classifier(self, num_classes, global_pool=''):
            self.num_classes = num_classes
            self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
    
        def forward_features(self, x):
            B = x.shape[0]
            x = self.stem_conv1(x)
            x = self.stem_relu1(x)
            x = self.stem_norm1(x)
    
            x = self.stem_conv2(x)
            x = self.stem_relu2(x)
            x = self.stem_norm2(x)
    
            x = self.stem_conv3(x)
            x = self.stem_relu3(x)
            x = self.stem_norm3(x)
    
            x, (H, W) = self.patch_embed_a(x)
            for i, blk in enumerate(self.blocks_a):
                x = blk(x, H, W, self.relative_pos_a)
    
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            x, (H, W) = self.patch_embed_b(x)
            for i, blk in enumerate(self.blocks_b):
                x = blk(x, H, W, self.relative_pos_b)
    
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            x, (H, W) = self.patch_embed_c(x)
            for i, blk in enumerate(self.blocks_c):
                x = blk(x, H, W, self.relative_pos_c)
    
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            x, (H, W) = self.patch_embed_d(x)
            for i, blk in enumerate(self.blocks_d):
                x = blk(x, H, W, self.relative_pos_d)
    
            B, N, C = x.shape
            x = self._fc(x.permute(0, 2, 1).reshape(B, C, H, W))
            x = self._bn(x)
            x = self._swish(x)
            x = self._avg_pooling(x).flatten(start_dim=1)
            x = self._drop(x)
            x = self.pre_logits(x)
            return x
    
        def forward(self, x):
            x = self.forward_features(x)
            x = self.head(x)
            return x
    
    
    def resize_pos_embed(posemb, posemb_new):
        # Rescale the grid of position embeddings when loading from state_dict. Adapted from
        # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
        _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
        ntok_new = posemb_new.shape[1]
        if True:
            posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
            ntok_new -= 1
        else:
            posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
        gs_old = int(math.sqrt(len(posemb_grid)))
        gs_new = int(math.sqrt(ntok_new))
        _logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)
        posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
        posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
        posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
        posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
        return posemb
    
    
    def checkpoint_filter_fn(state_dict, model):
        """ convert patch embedding weight from manual patchify + linear proj to conv"""
        out_dict = {}
        if 'model' in state_dict:
            # For deit models
            state_dict = state_dict['model']
        for k, v in state_dict.items():
            if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
                # For old models that I trained prior to conv based patchification
                O, I, H, W = model.patch_embed.proj.weight.shape
                v = v.reshape(O, -1, H, W)
            elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
                # To resize pos embedding when using model at different size from pretrained weights
                v = resize_pos_embed(v, model.pos_embed)
            out_dict[k] = v
        return out_dict
    
    
    def _create_cmt_model(pretrained=False, distilled=False, **kwargs):
        default_cfg = _cfg()
        default_num_classes = default_cfg['num_classes']
        default_img_size = default_cfg['input_size'][-1]
    
        num_classes = kwargs.pop('num_classes', default_num_classes)
        img_size = kwargs.pop('img_size', default_img_size)
        repr_size = kwargs.pop('representation_size', None)
        if repr_size is not None and num_classes != default_num_classes:
            # Remove representation layer if fine-tuning. This may not always be the desired action,
            # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
            _logger.warning("Removing representation layer for fine-tuning.")
            repr_size = None
    
        model = CMT(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs)
        model.default_cfg = default_cfg
    
        if pretrained:
            load_pretrained(
                model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3),
                filter_fn=partial(checkpoint_filter_fn, model=model))
        return model
    
    
    @register_model
    def cmt_ti(pretrained=False, **kwargs):
        """
        CMT-Tiny
        """
        model_kwargs = dict(qkv_bias=True, **kwargs)
        model = _create_cmt_model(pretrained=pretrained, **model_kwargs)
        return model
    
    
    @register_model
    def cmt_xs(pretrained=False, **kwargs):
        """
        CMT-XS: dim x 0.9, depth x 0.8, input 192
        """
        model_kwargs = dict(
            qkv_bias=True, embed_dims=[52, 104, 208, 416], stem_channel=16, num_heads=[1, 2, 4, 8],
            depths=[3, 3, 12, 3], mlp_ratios=[3.77, 3.77, 3.77, 3.77], qk_ratio=1, sr_ratios=[8, 4, 2, 1], **kwargs)
        model = _create_cmt_model(pretrained=pretrained, **model_kwargs)
        return model
    
    
    @register_model
    def cmt_s(pretrained=False, **kwargs):
        """
        CMT-Small
        """
        model_kwargs = dict(
            qkv_bias=True, embed_dims=[64, 128, 256, 512], stem_channel=32, num_heads=[1, 2, 4, 8],
            depths=[3, 3, 16, 3], mlp_ratios=[4, 4, 4, 4], qk_ratio=1, sr_ratios=[8, 4, 2, 1], **kwargs)
        model = _create_cmt_model(pretrained=pretrained, **model_kwargs)
        return model
    
    
    @register_model
    def cmt_b(pretrained=False, **kwargs):
        """
        CMT-Base
        """
        model_kwargs = dict(
            qkv_bias=True, embed_dims=[76, 152, 304, 608], stem_channel=38, num_heads=[1, 2, 4, 8],
            depths=[4, 4, 20, 4], mlp_ratios=[4, 4, 4, 4], qk_ratio=1, sr_ratios=[8, 4, 2, 1], dp=0.3, **kwargs)
        model = _create_cmt_model(pretrained=pretrained, **model_kwargs)
        return model
    
    if __name__ == '__main__':
        x=torch.randn(1,3,224,224)
        model=cmt_ti(num_classes=10)
        y=model(x)
        print(y.shape)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476

    参考资料

    CVPR22 |CMT:CNN和Transformer的高效结合(开源) - 知乎 (zhihu.com)

    Transformer(十五)CMT - 知乎 (zhihu.com)

  • 相关阅读:
    nginx的安装与配置启动(linux)
    Android managed configurations(设置受管理的配置)
    SSL---VPN
    vulntarget-b靶场详细通关记录
    LVS:NAT模式详解
    基于Java毕业设计迎新管理系统演示录像2020源码+系统+mysql+lw文档+部署软件
    放弃微服务,构建单体应用
    编写自己的目标跟踪算法
    https攻击怎么防御
    猫狗识别—视频识别
  • 原文地址:https://blog.csdn.net/wujing1_1/article/details/126546733