这个读后感,不就是笔记吗把人工神经网络的概念、发展历程,使用范围,目前研究的深度介绍一下就好了。
人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionistModel),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
谷歌人工智能写作项目:神经网络伪原创
人工神经网络最初是为了尝试利用人脑的架构来执行传统算法几乎没有成功的任务文案狗。对人类中枢神经系统的观察启发了人工神经网络这个概念。
在人工神经网络中,简单的人工节点,称作神经元(neurons),连接在一起形成一个类似生物神经网络的网状结构。
人工神经 网络基于一组称为人工神经元的连接单元或节点,它们对生物大脑中的神经元进行松散建模。每个连接,就像生物大脑中的突触一样,可以向其他神经元传输信号。
人工神经元接收信号然后对其进行处理,并可以向与其相连的神经元发送信号。连接处的“信号”是一个实数,每个神经元的输出由其输入总和的某个非线性函数计算。连接称为边。
神经元和边缘通常具有权重随着学习的进行而调整。权重会增加或减少连接处的信号强度。神经元可能有一个阈值,这样只有当聚合信号超过该阈值时才会发送信号。通常,神经元聚合成层。
不同的层可以对其输入执行不同的转换。信号从第一层(输入层)传输到最后一层(输出层),可能在多次遍历层之后。
现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法(LearningMethod)得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间;另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。
和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如机器视觉和语音识别。这些问题都是很难被传统基于规则的编程所解决的。
构成1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。
例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activitiesoftheneurons)。
2、激励函数(ActivationRule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。
一般激励函数依赖于网络中的权重(即该网络的参数)。3、学习规则(LearningRule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。
一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。
在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
机械故障诊断需要进一步确定故障的性质,程度,类别,部位,原因,发展趋势等,为预报,控制,调整,维护提供依据。主要包括信号检测,特征提取,状态识别,诊断决策。
诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。
美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。
美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。
还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;DelioProducts公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGINGCOOLINGADCISOR等。
近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用。
英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。
英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。
英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障数据中心的作用。目前英国在摩擦磨损、汽车、飞机发动机监测和诊断方面仍具有领先的地位。
欧洲一些国家的诊断技术发展各具特色。如瑞典SPM公司的轴承监测技术,AGEMA公司的红外热像技术;挪威的船舶诊断技术;丹麦的B&K公司的振动、噪声监测技术等都是各有千秋。
日本在钢铁、化工等民用工业中诊断技术占有优势。
东京大学、东京工业大学、京都大学、早稻田大学等高等学校着重基础性理论研究;而机械技术研究所、船舶技术研究所等国立研究机构重点研究机械基础件的诊断研究;三菱重工等民办企业在旋转机械故障诊断方面开展了系统的工作,所研制的“机械保健系统”在汽轮发电机组故障监测和诊断方面已经起到了有效的作用。
我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。
虽起步较晚,但经过近几年的努力,加上政府有关部门多次组织外国诊断技术专家来华讲学,已基本跟上了国外在此方面的步伐,在某些理论研究方面已和国外不相上下。
目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。
全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。
工作比较集中的是大型旋转机械故障诊断系统,已经开发了20种以上的机组故障诊断系统和十余种可用来做现场故障诊断的便携式现场数据采集器。
透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;而西安交通大学的“大型选转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”。
东北大学设备诊断工程中心经过多年研究,研制成功了“轧钢机状态监测诊断系统”,“风机工作状态监测诊断系统”,均取得了可喜的成果。
可用于机械状态监测与故障诊断的信号有振动诊断、油样分析、温度监测和无损检测探伤为主,其他技术或方法为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最为充分。
目前,在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒频谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅里叶变换、Winger分布和小波变换等。
而当代人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不仅在理论上得到了相当的发展,且己有成功的应用实例,作为人工智能的一个重要分支,人工神经网络的研究己成为机械故障诊断领域的一个最新研究热点。
随着计算机技术、嵌入式技术以及新兴的虚拟仪器技术的发展,故障诊断装置和仪器己经由最初的模拟式监测仪表发展到现在的基于计算机的实时在线监测一与故障诊断系统和基于微机的便携式监测分析系统。
这类系统一般具有强大的信号分析与数据管理功能,能全面记录反映机器运行状态变化的各种信息,实现故障的精确诊断。随着网络技术的发展,远程分布式监测诊断系统成为目前的一个研究开发热点。
优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。
扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。
近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。
将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。
其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。
由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。
目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。
人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络突出的优点:(1)可以充分逼近任意复杂的非线性关系;(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;(3)采用并行分布处理方法,使得快速进行大量运算成为可能;(4)可学习和自适应不知道或不确定的系统;(5)能够同时处理定量、定性知识。
1、可处理噪声:一个人工神经网络补训练完成后,即使输入的数据中有部分遗失,它仍然有能力辨认样本。2、不易损坏:因为人工神经网络以分布式的方法来表示数据,所以当某些单元损坏时,它依然可以正常地工作。
3、可以平行处理。4、可以学习新的观念。以上就是人脑神经网络的优点。
我想这可能是你想要的神经网络吧!
什么是神经网络:人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。
主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
具有学习能力。1、例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。2、具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。3、具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。