• 2021 ICPC Asia East Continent Final L. Fenwick Tree


    Prof. Pang is giving a lecture on the Fenwick tree (also called binary indexed tree).

    In a Fenwick tree, we have an array c[1…n]of length nn which is initially all-zero (c[i]=0 for any 1≤i≤n). Each time, Prof. Pang can call the following procedure for some position pospos (1≤pos≤n) and value valval:

    def update(pos, val):
        while (pos <= n):
            c[pos] += val
            pos += pos & (-pos)
    
    

    Note that pos & (-pos) equals to the maximum power of 2that divides pos for any positive integer pos.

    In the procedure, valval can be any real number. After calling it some (zero or more) times, Prof. Pang forgets the exact values in the array c. He only remembers whether c[i]is zero or not for each i from 1 to n. Prof. Pang wants to know what is the minimum possible number of times he called the procedure assuming his memory is accurate.

    Input

    The first line contains a single integer T (1≤T≤105)denoting the number of test cases.

    For each test case, the first line contains an integer n (1≤n≤105). The next line contains a string of length n. The ii-th character of the string is 1 if c[i] is nonzero and 0 otherwise.

    It is guaranteed that the sum of nn over all test cases is no more than 106106.

    Output

    For each test case, output the minimum possible number of times Prof. Pang called the procedure. It can be proven that the answer always exists.

    Example

    input

    Copy

    3
    5
    10110
    5
    00000
    5
    11111
    

    output

    Copy

    3
    0
    3
    

    Note

    For the first example, Prof. Pang can call update(1,1), update(2,-1), update(3,1) in order.

    For the third example, Prof. Pang can call update(1,1), update(3,1), update(5,1) in order.

    1. #include <bits/stdc++.h>
    2. using namespace std;
    3. #define int long long
    4. int lowbit(int x)
    5. {
    6. return x&(-x);
    7. }
    8. void solve()
    9. {
    10. int n;
    11. cin>>n;
    12. string s;
    13. cin>>s;
    14. vector<int>cnt(n+1);
    15. for(int i=1;i<=n;i++)
    16. {
    17. if(s[i-1]=='1')
    18. {
    19. if(i+lowbit(i)<=n)
    20. {
    21. cnt[i+lowbit(i)]++;
    22. }
    23. }
    24. }
    25. int sum=0;
    26. for(int i=1;i<=n;i++)
    27. {
    28. if(s[i-1]=='0'&&cnt[i]==1)
    29. {
    30. sum++;
    31. }
    32. else if(s[i-1]=='1'&&cnt[i]==0)
    33. {
    34. sum++;
    35. }
    36. }
    37. cout<<sum<<"\n";
    38. }
    39. signed main()
    40. {
    41. /*ios::sync_with_stdio(false);
    42. cin.tie(0);
    43. cout.tie(0);*/
    44. int _;
    45. cin>>_;
    46. while(_--)
    47. {
    48. solve();
    49. }
    50. return 0;
    51. }

  • 相关阅读:
    【k8s】Pod 的钩子
    Vue3 从零开始 搭建 简单 干净 的 后台管理系统
    Spring ApplicationListener监听器用法
    vue预览下载PDF文件
    WEB网络渗透的基础知识
    golang mapstructure库实践
    前端web自动化测试:selenium怎么实现关键字驱动
    Java学习之包访问修饰符
    数据库原理以及SQL优化(1):数据库调优基础入门
    基于bp神经网络汽车自动变速器最佳挡位判断(Matlab代码实现)
  • 原文地址:https://blog.csdn.net/m0_61949623/article/details/126515543