专栏链接:
https://blog.csdn.net/qq_39707285/article/details/124005405
本专栏主要总结深度学习中的知识点,从各大数据集比赛开始,介绍历年冠军算法;同时总结深度学习中重要的知识点,包括损失函数、优化器、各种经典算法、各种算法的优化策略Bag of Freebies (BoF)等。
最近在卷积神经网络上的研究主要关注提高准确率。在给定相应的准确率之后,通常有多个CNN结构可以达到该准确率要求。在同等准确率的情况下,较小的CNN结构至少有三个优点:
为了达到所有这些优点,本文提出了较小的CNN结构,称之为SqueezeNet。SqueezeNet在ImageNet上实现了AlexNet同级别的准确率,但参数减少了50倍。另外使用模型压缩技术,能够将SqueezeNet压缩到小于0.5MB(比AlexNet小近510倍)。
策略1:用1x1卷积代替3x3卷积
1x1卷积核的参数比3x3少9倍,所以网络中部分卷积核改为使用为1x1卷积。
策略2:减少输入到3*3卷积核的通道数量
对于一个完全由3×3卷积核组成的卷积层来说,总参数量=输入通道数×卷积核数量×(3×3),所以仅仅替换3×3卷积核为1×1,还不能完全达到减少参数的目的,还需要减少输入到3×3卷积核的通道数。本文提出squeeze layer,来减少输入到3×3卷积核的通道数。
策略3:在网络后期再进行下采样,使卷积层具有较大的激活图
这里的激活图(activate maps)指的是输出的特征图。在卷积网络中,每个卷积层产生空间分辨率至少为1×1(经常大于1×1)的输出激活图,激活图的宽和高主要是由1)输入的数据(例如256×256的图片) 2)CNN结构中下采样层方法 决定的。下采样通常是stride>1的卷积层或者池化层,如果在早期layer中有较大的stride,则后面大部分的layers中将是小的激活图,如果在早期layer中stride为1,在网络后期layer中stride>1,则大部分的layer将有一个大的激活图。本文的观点是,大的激活图能够产生更高的分类准确率,所以在网络设计中,stride>1往往设置在后期的layer中。
策略1和策略2在试图保持准确性的同时,明智地减少CNN中的参数数量,策略3是在有限的参数预算上最大化准确率。
为实现这3大策略,提出了Fire模块,Fire模块中主要包含squeeze层和expand层。squeeze卷积如图橙色椭圆内所示,只使用1×1卷积(策略1优化点),然后进入到expand卷积,expand卷积包括1×1(策略1优化点)和3×3卷积,squeeze和expand整体构成Fire模块,该模块有三个超参数s1x1,e1x1,e3x3,其中s1x1是squeeze层卷积核的数量,e1x1是expand层中1×1卷积核的数量,e3x3是expand层中3×3卷积核的数量,另外设置s1x1<(e1x1+e3x3)(策略2优化点),这样就能限制输入到3×3卷积核通道数,实现策略2的想法。
SqueezeNet整体网络结构图如下所示,其中maxpool(stride=2)分别设置在conv1/fire4/fire8/conv10之后,这些相对较晚的pool安排符合策略3的想法。
Fire模块的代码如下:
class Fire(nn.Module):
def __init__(
self,
inplanes: int,
squeeze_planes: int,
expand1x1_planes: int,
expand3x3_planes: int
) -> None:
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.squeeze_activation(self.squeeze(x))
return torch.cat([
self.expand1x1_activation(self.expand1x1(x)),
self.expand3x3_activation(self.expand3x3(x))
], 1)
SqueezeNet主要有两个结构,SqueezeNet1_0和SqueezeNet1_1,SqueezeNet1_0即官方版本(图2左侧),SqueezeNet1_1与SqueezeNet1_0相比在没有减少准确率的情况下,节省近2.4倍的参数量和计算量。
SqueezeNet1_0的网络结构如下:
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
SqueezeNet1_1的网络结构如下:
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
SqueezeNet各层详细参数量及其输入输出如下表所示。
本文最主要就是三点: