• ch4-1时域到频域(短时分析)


    1.  良好的特征

    一个良好的特征,针对不同的问题需要有以下属性:

    1. 具有信息量的;
    2. 具有区分度的;
    3. 独立的;

    当前的使用方法:

    数据 --> 特征提取 -->  特征 -->  机器学习 --> 预测 --> 预测结果

    1.1  全局声学特征

    全局特征的局限性在于,当信号是平稳信号才具有意义;
    全局特征比如: 基频, 共振峰, 声强;

    并且全局特征对噪声的鲁棒性较差,
    由于实践过程中,经常处理非平稳信号, 所以对信号进行分帧,

    将一小段信号,分成多个帧, 从而在每一帧当中,可以看做是平稳信号;

    2.  分帧

    在这里插入图片描述
    帧的大小: 决定了每一帧的持续时间;

    帧移: 两个相邻帧,两帧的起始点之间间隔;

    在这里插入图片描述

    1. 当帧长大于帧移时: 帧之间有重叠的采样点, 属于绝大数情况;
    2. 帧长 = 帧移: 各帧之间相互独立;
    3. 帧长 小于帧移: 各帧之间,存在采样点的丢失;

    2.1  以时间为单位进行分帧

    当使用时间为单位,来对帧进行划分时:

    一帧信号通常取在15ms-30ms之间,经验值为25ms(业界常用)。

    帧长为25ms的一帧信号指的是时长有25毫秒的语音信号。

    2.2  以采样点数为单位进行分帧

    用时间表示,常设为10ms;

    用采样点表示,16kHz采样率的信号帧移一般为160个采样点。

    3.  分帧带来的影响

    在这里插入图片描述

    由于分帧之后的信号, 
    在每一帧的起始点和终点的位置,有着高度的不连续性, 而原始的信号中则不存在这样的情况。

    3.1 吉布斯现象

    如果对分帧之后的信号,直接进行傅里叶变换, 则会产生吉布斯现象,在不连续点产生高频分量,导致傅里叶变换后的频谱出现局部峰值。

    在这里插入图片描述

    3.2 频谱泄露

    周期信号在分帧中被截断,导致频谱在整个频带内发生拖尾现象,这个现象称为频谱泄露, spectral leakage;

    为了去除哪些本不应该存在的高频分量, 以及频谱的拖尾现象,

    产生了窗函数的方式;

    4. 窗函数

    窗函数的设计思想:

    对帧内的每一个采样点,乘上不同的权重,
    具体是, 使用较大的权重 乘以靠近窗中心的信号,
    接近0的权重乘以 窗边缘的信号,

    从而使得靠近帧中心的信号趋于原始数值, 分帧边界的信号趋于0;

    4.1  两种窗函数

    在这里插入图片描述

    一帧内的采样点信号, 使用:
    x [ n ] x[n] x[n] , 0 ≤ n ≤ N − 1 表示;

    窗函数的权重分布:
    w [ n ] = ( 1 − α ) − α c o s 2 π n N − 1 w[n] = (1 − α ) − α cos \frac{2πn}{N−1} w[n]=(1α)αcosN12πn

    hanning  与 hamming,两种窗函数之间的区别就是,  α \alpha α 的取值系数不同;
    • Hanning: α = 0.5
    • Hamming: α = 0.46

    5. 分帧特征的后处理

    5.1 帧叠加

    相邻两帧进行叠加,用于捕获更多的上下文信息;

    5.2 帧的下采样

    对相邻的两个叠加帧, 进行间隔采样; 从而减少计算量;

    5.3 帧的归一化

    对一帧内的数据进行归一化, 
    从而有利于模型进行收敛;

    在这里插入图片描述

  • 相关阅读:
    【Java】List、Set、数据结构、Collections
    基于Yolov5的吸烟行为识别检测
    echarts折线图设置背景颜色
    Hanoi塔问题
    【OpenCV】OpenCV 之 n 点透视问题
    window 资源监视器 perfmon -res
    asp.net实验管理系统VS开发sqlserver数据库web结构c#编程web网页设计
    计算机毕业设计Java惠购网站(源码+系统+mysql数据库+lw文档)
    基于HFSS的线阵综合分析
    python04- 函数、time
  • 原文地址:https://blog.csdn.net/chumingqian/article/details/126476932