对获取树高的函数进行修改,在获取树高的函数中对平衡进行判断即可。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: Optional[TreeNode]) -> bool:
return self.get_help(root) != -1
def get_help(self, root):
if not root:
return 0
left = self.get_help(root.left)
if left == -1:
return -1
right = self.get_help(root.right)
if right == -1:
return -1
if abs(left - right) < 2:
return max(left, right) + 1
else:
return -1
递归向下求值,每次减去当前结点的值,递归结束的条件是遇到叶子结点且刚
好求得的值为 0。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
if not root:
return False
queue = collections.deque()
queue.append([root, root.val])
while queue:
node, num = queue.popleft()
if not node.left and not node.right and num == targetSum:
return True
if node.left:
queue.append([node.left, num + node.left.val])
if node.right:
queue.append([node.right, num + node.right.val])
return False
递归拆分。前序遍历的第一个结点是根结点,在中序遍历中找到该根结点的位
置,区分出左右子树,再递归向下拆分左右子树即可。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
if not preorder or not inorder:
return
root = TreeNode(preorder[0])
index = inorder.index(preorder[0]) # 找中序遍历根所在的位置
root.left = self.buildTree(preorder[1:index+1], inorder[:index])
root.right = self.buildTree(preorder[index+1:],inorder[index+1:])
return root
递归数左子树和右子树的结点,加上根结点即可。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
return self.countNodes(root.left) + self.countNodes(root.right) + 1
统计右子树的结点个数 cntr,递归处理即可。如果 k = cntr + 1,那么是根
结点,如果 k ≤ cntr,那么在右子树中且是第 k 大,否则在左子树中且是第
k − cntr − 1 大。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def kthLargest(self, root: TreeNode, k: int) -> int:
if not root:
return
self.count = 0
self.data = 0
def get_help(root):
if not root:
return
get_help(root.right)
self.count += 1
if self.count == k:
self.data = root.val
return
get_help(root.left)
return
get_help(root)
return self.data
先和根结点比较,再递归地和左右子树比较即可。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def get_help(self, A, B):
if not B:
return True
if not A:
return False
if A.val != B.val:
return False
return self.get_help(A.left, B.left) and self.get_help(A.right, B.right)
def isSubStructure(self, A: TreeNode, B: TreeNode) -> bool:
if not A or not B:
return False
return self.get_help(A, B) or self.isSubStructure(A.left, B) or self.isSubStructure(A.right, B)
dp 的第一维表示“父结点”是否放置摄像头,第二维表示“当前结点”是否放
置摄像头。例如 dp[0][0] 表示父结点不放置摄像头,当前结点也不放置摄像头
的情况下,覆盖整棵树所需要的最少摄像头数。
对放置情况进行分情况讨论。以 dp[0][0] 为例,有:
这表示,父节点和当前结点都不放摄像头的情况下,所需要的最少摄像头数,需
要取以下三种情况的最小值:
(1) 左子树的父节点不放置摄像头 + 左子树自身放置摄像头 + 右子树的父节点
不放置摄像头 + 右子树自身不放置摄像头
(2) 左子树的父节点不放置摄像头 + 左子树自身不放置摄像头 + 右子树的父节
点不放置摄像头 + 右子树自身放置摄像头
(3) 左子树的父节点不放置摄像头 + 左子树
按照完美二叉树的形式,对所有的结点进行编号。层序遍历后同一层内编号最
大结点和最小编号结点的编号之差加一即为所求。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def widthOfBinaryTree(self, root: Optional[TreeNode]) -> int:
if not root:
return
result = []
item = []
queue = collections.deque()
queue.append([root, 1])
while queue:
tmp = []
for _ in range(len(queue)):
node, index = queue.popleft()
tmp.append(index)
if node.left:
queue.append([node.left, index *2 ])
if node.right:
queue.append([node.right,index *2 + 1])
result.append(tmp)
for res in result:
item.append(res[-1] - res[0] + 1)
return max(item)