deepstream_python_apps
1、下载nvidia官方发布的 deepstream_python_apps到 /opt/nvidia/deepstream/deepstream/sour ces 目录下,根据deepstrema版本下载对应版本代码,我使用得deepstream6.0,所以我克隆v1.1.0版本代码
2、根据HOWTO.md文件安装依赖,主要是安装使用得Gst Python和pyds模块
3、运行官方例子,检查环境是否安装成功
deepstream_python_yolov5
1、下载yolov5得yolov5-deepstream-python代码,
2、编译,CUDA_VER版本根据自己版本设置
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo/
3、根据tensorrt-yolov5将模型转换成engine模型
首先根据需要修改参数,主要是input w、h,batct_size:
yololayer.h
- static constexpr int CLASS_NUM = 10;
- static constexpr int INPUT_H = 1088; // yolov5's input height and width must be divisible by 32.
- static constexpr int INPUT_W = 1088;
yolov5.cpp
- #define USE_FP16 // set USE_INT8 or USE_FP16 or USE_FP32
- #define DEVICE 0 // GPU id
- #define NMS_THRESH 0.4
- #define CONF_THRESH 0.5
- #define BATCH_SIZE 20
- #define MAX_IMAGE_INPUT_SIZE_THRESH 3000 * 3000 // ensure it exceed the maximum size in the input images !
- // clone code according to above #Different versions of yolov5
- // download https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt
- cp {tensorrtx}/yolov5/gen_wts.py {ultralytics}/yolov5
- cd {ultralytics}/yolov5
- python gen_wts.py -w yolov5s.pt -o yolov5s.wts
- // a file 'yolov5s.wts' will be generated.
- cd {tensorrtx}/yolov5/
- // update CLASS_NUM in yololayer.h if your model is trained on custom dataset
- mkdir build
- cd build
- cp {ultralytics}/yolov5/yolov5s.wts {tensorrtx}/yolov5/build
- cmake ..
- make
- sudo ./yolov5 -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file
- sudo ./yolov5 -d [.engine] [image folder] // deserialize and run inference, the images in [image folder] will be processed.
- // For example yolov5s
- sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
- sudo ./yolov5 -d yolov5s.engine ../samples
- // For example Custom model with depth_multiple=0.17, width_multiple=0.25 in yolov5.yaml
- sudo ./yolov5 -s yolov5_custom.wts yolov5.engine c 0.17 0.25
- sudo ./yolov5 -d yolov5.engine ../samples
4、检查 deepstream_yolov5_config.txt
and main.py
中得路径,步骤3会生成libmyplugins.so插件,因为我这边导入import ctypes报错,所以将其注销
- #import ctypes
-
- import pyds
-
- #ctypes.cdll.LoadLibrary('/home/nvidia/lefugang/tensorrtx/yolov5/build/libmyplugins.so')
5、 修改main.py中sink插件,使得可以在终端输出结果,不需要再显示器上显示画面,主要是去掉nvegltransform插件,因为该插件时跟随nveglglessink使用的。
- #!/usr/bin/env python3
-
- ################################################################################
- # SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
- # SPDX-License-Identifier: Apache-2.0
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- ################################################################################
-
- import sys
- # import keyboard
- sys.path.append('../')
- import gi
- gi.require_version('Gst', '1.0')
- from gi.repository import GObject, Gst
- from common.is_aarch_64 import is_aarch64
- from common.bus_call import bus_call
- #import ctypes
-
- import pyds
-
- #ctypes.cdll.LoadLibrary('/home/nvidia/lefugang/tensorrtx/yolov5/build/libmyplugins.so')
-
- PGIE_CLASS_ID_VEHICLE = 0
- PGIE_CLASS_ID_BICYCLE = 1
- PGIE_CLASS_ID_PERSON = 2
- PGIE_CLASS_ID_ROADSIGN = 3
-
-
- def osd_sink_pad_buffer_probe(pad,info,u_data):
- frame_number=0
- #Intiallizing object counter with 0.
- num_rects=0
- gst_buffer = info.get_buffer()
- if not gst_buffer:
- print("Unable to get GstBuffer ")
- return
-
- # Retrieve batch metadata from the gst_buffer
- # Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
- # C address of gst_buffer as input, which is obtained with hash(gst_buffer)
- batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
-
- l_frame = batch_meta.frame_meta_list
- while l_frame is not None:
- try:
- # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
- # The casting is done by pyds.glist_get_nvds_frame_meta()
- # The casting also keeps ownership of the underlying memory
- # in the C code, so the Python garbage collector will leave
- # it alone.
- #frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data)
- frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
- except StopIteration:
- break
-
-
- display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
-
- frame_number=frame_meta.frame_num
- num_rects = frame_meta.num_obj_meta
- l_obj=frame_meta.obj_meta_list
- while l_obj is not None:
- try:
- # Casting l_obj.data to pyds.NvDsObjectMeta
- #obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data)
- obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
- except StopIteration:
- break
- # set bbox color in rgba
- print(obj_meta.class_id, obj_meta.obj_label, obj_meta.confidence)
- # set the border width in pixel
- obj_meta.rect_params.border_width=0
- obj_meta.rect_params.has_bg_color=1
- obj_meta.rect_params.bg_color.set(0.0, 0.5, 0.3, 0.4)
-
- try:
- l_obj=l_obj.next
- except StopIteration:
- break
-
- # Acquiring a display meta object. The memory ownership remains in
- # the C code so downstream plugins can still access it. Otherwise
- # the garbage collector will claim it when this probe function exits.
-
- display_meta.num_labels = 1
- py_nvosd_text_params = display_meta.text_params[0]
- # Setting display text to be shown on screen
- # Note that the pyds module allocates a buffer for the string, and the
- # memory will not be claimed by the garbage collector.
- # Reading the display_text field here will return the C address of the
- # allocated string. Use pyds.get_string() to get the string content.
- # py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON])
-
- # Now set the offsets where the string should appear
- py_nvosd_text_params.x_offset = 10
- py_nvosd_text_params.y_offset = 12
-
- # Font , font-color and font-size
- py_nvosd_text_params.font_params.font_name = "Serif"
- py_nvosd_text_params.font_params.font_size = 10
- # set(red, green, blue, alpha); set to White
- py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)
-
- # Text background color
- py_nvosd_text_params.set_bg_clr = 1
- # set(red, green, blue, alpha); set to Black
- py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
- # Using pyds.get_string() to get display_text as string
- # print(pyds.get_string(py_nvosd_text_params.display_text))
- pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
- try:
- l_frame=l_frame.next
- except StopIteration:
- break
-
- return Gst.PadProbeReturn.OK
-
-
-
- def main(args):
- # Check input arguments
- if len(args) != 2:
- sys.stderr.write("usage: %s
\n" % args[0]) - sys.exit(1)
-
- # Standard GStreamer initialization
- GObject.threads_init()
- Gst.init(None)
-
- # Create gstreamer elements
- # Create Pipeline element that will form a connection of other elements
- print("Creating Pipeline \n ")
- pipeline = Gst.Pipeline()
-
- if not pipeline:
- sys.stderr.write(" Unable to create Pipeline \n")
-
- # Source element for reading from the file
- print("Creating Source \n ")
- source = Gst.ElementFactory.make("filesrc", "file-source")
- if not source:
- sys.stderr.write(" Unable to create Source \n")
-
- # Since the data format in the input file is elementary h264 stream,
- # we need a h264parser
- print("Creating H264Parser \n")
- h264parser = Gst.ElementFactory.make("h264parse", "h264-parser")
- if not h264parser:
- sys.stderr.write(" Unable to create h264 parser \n")
-
- # Use nvdec_h264 for hardware accelerated decode on GPU
- print("Creating Decoder \n")
- decoder = Gst.ElementFactory.make("nvv4l2decoder", "nvv4l2-decoder")
- if not decoder:
- sys.stderr.write(" Unable to create Nvv4l2 Decoder \n")
-
- # Create nvstreammux instance to form batches from one or more sources.
- streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
- if not streammux:
- sys.stderr.write(" Unable to create NvStreamMux \n")
-
- # Use nvinfer to run inferencing on decoder's output,
- # behaviour of inferencing is set through config file
- pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
- if not pgie:
- sys.stderr.write(" Unable to create pgie \n")
-
- # Use convertor to convert from NV12 to RGBA as required by nvosd
- nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
- if not nvvidconv:
- sys.stderr.write(" Unable to create nvvidconv \n")
-
- # Create OSD to draw on the converted RGBA buffer
- nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
-
- if not nvosd:
- sys.stderr.write(" Unable to create nvosd \n")
-
- # Finally render the osd output
- if is_aarch64():
- transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")
-
- print("Creating EGLSink \n")
- sink = Gst.ElementFactory.make("fakesink", "nvvideo-renderer")
- if not sink:
- sys.stderr.write(" Unable to create egl sink \n")
-
- print("Playing file %s " %args[1])
- source.set_property('location', args[1])
- streammux.set_property('width', 1920)
- streammux.set_property('height', 1080)
- streammux.set_property('batch-size', 1)
- streammux.set_property('batched-push-timeout', 4000000)
- pgie.set_property('config-file-path', "config/deepstream_yolov5_config.txt")
-
- print("Adding elements to Pipeline \n")
- pipeline.add(source)
- pipeline.add(h264parser)
- pipeline.add(decoder)
- pipeline.add(streammux)
- pipeline.add(pgie)
- pipeline.add(nvvidconv)
- pipeline.add(nvosd)
- pipeline.add(sink)
-
- # we link the elements together
- # file-source -> h264-parser -> nvh264-decoder ->
- # nvinfer -> nvvidconv -> nvosd -> video-renderer
- print("Linking elements in the Pipeline \n")
- source.link(h264parser)
- h264parser.link(decoder)
-
- sinkpad = streammux.get_request_pad("sink_0")
- if not sinkpad:
- sys.stderr.write(" Unable to get the sink pad of streammux \n")
- srcpad = decoder.get_static_pad("src")
- if not srcpad:
- sys.stderr.write(" Unable to get source pad of decoder \n")
- srcpad.link(sinkpad)
- streammux.link(pgie)
- pgie.link(nvvidconv)
- nvvidconv.link(nvosd)
- nvosd.link(sink)
-
- # create an event loop and feed gstreamer bus mesages to it
- #GObject.timeout_add_seconds(5, pipeline_pause(pipeline))
- loop = GObject.MainLoop()
- bus = pipeline.get_bus()
- bus.add_signal_watch()
- bus.connect ("message", bus_call, loop)
-
- # Lets add probe to get informed of the meta data generated, we add probe to
- # the sink pad of the osd element, since by that time, the buffer would have
- # had got all the metadata.
- osdsinkpad = nvosd.get_static_pad("sink")
- if not osdsinkpad:
- sys.stderr.write(" Unable to get sink pad of nvosd \n")
-
- osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
-
- print("Starting pipeline \n")
- pipeline.set_state(Gst.State.PLAYING)
- try:
- loop.run()
-
- except:
- pass
- # cleanup
- pipeline.set_state(Gst.State.NULL)
-
- if __name__ == '__main__':
- sys.exit(main(sys.argv))
-
6、运行
LD_PRELOAD=/home/nvidia/lfg/tensorrtx/yolov5/build/libmyplugins.so python main.py /opt/nvidia/deepstream/deepstream/samples/streams/sample_720p.h264
- Creating Pipeline
-
- Creating streamux
-
- Creating source_bin 0
-
- Creating source bin
- source-bin-00
- Creating Pgie
-
- Creating tiler
-
- Creating nvvidconv
-
- Creating nvosd
-
- Creating transform
-
- Creating EGLSink
-
- Atleast one of the sources is live
- Adding elements to Pipeline
-
- Linking elements in the Pipeline
-
- Now playing...
- 1 : rtsp://admin:asdf1234@10.1.7.220:554
- Starting pipeline
-
- 0:00:04.399294673 9779 0x5561021e30 INFO nvinfer gstnvinfer.cpp:638:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1900> [UID = 1]: deserialized trt engine from :/opt/nvidia/deepstream/deepstream-6.0/sources/deepstream_python_apps/apps/yolov5-deepstream-python/best.engine
- INFO: [Implicit Engine Info]: layers num: 2
- 0 INPUT kFLOAT data 3x1088x1088
- 1 OUTPUT kFLOAT prob 6001x1x1
-
- 0:00:04.399614801 9779 0x5561021e30 INFO nvinfer gstnvinfer.cpp:638:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:2004> [UID = 1]: Use deserialized engine model: /opt/nvidia/deepstream/deepstream-6.0/sources/deepstream_python_apps/apps/yolov5-deepstream-python/best.engine
- 0:00:04.429867023 9779 0x5561021e30 INFO nvinfer gstnvinfer_impl.cpp:313:notifyLoadModelStatus:<primary-inference> [UID 1]: Load new model:config/deepstream_yolov5_config.txt sucessfully
- Decodebin child added: source
-
- Decodebin child added: decodebin0
-
- Decodebin child added: rtph264depay0
-
- Decodebin child added: h264parse0
-
- Decodebin child added: capsfilter0
-
- Decodebin child added: nvv4l2decoder0
-
- Opening in BLOCKING MODE
- NvMMLiteOpen : Block : BlockType = 261
- NVMEDIA: Reading vendor.tegra.display-size : status: 6
- NvMMLiteBlockCreate : Block : BlockType = 261
- In cb_newpad
-
- gstname= video/x-raw
- features= <Gst.CapsFeatures object at 0x7fa3fd3e88 (GstCapsFeatures at 0x7f3009cda0)>
- Frame Number= 0 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 1 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 2 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 3 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 4 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 5 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 6 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 7 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 8 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 9 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 10 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 11 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 12 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 13 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 14 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 15 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 16 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 17 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 18 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
- Frame Number= 19 Number of Objects= 0 Vehicle_count= 0 Person_count= 0
7、成功