• Google Earth Engine(GEE)—— GRIDMET: 爱达荷大学网格化地表气象数据集


    GRIDMET: 爱达荷大学网格化地表气象数据

    格雷德地表气象数据集提供了1979年以来美国毗连地区的温度、降水、风、湿度和辐射的高空间分辨率(约4公里)的每日地表场。该数据集将来自PRISM的高分辨率空间数据与来自国家土地数据同化系统(NLDAS)的高时间分辨率数据相融合,以产生空间和时间上的连续场,用于额外的陆地表面建模。

    该数据集包含临时产品,当完整的源数据可用时,会被更新的版本所取代。产品可以通过 "状态 "属性的值来区分。起初,资产是以status='early'的方式摄入的。几天后,它们会被状态='临时'的资产所取代。大约2个月后,它们会被状态='永久'的最终资产所取代。

    Dataset Availability

    1979-01-01T00:00:00 -

    Dataset Provider

    University of California Merced

    Collection Snippet

    ee.ImageCollection("IDAHO_EPSCOR/GRIDMET")

    Resolution

    4638.3 meters

    Bands Table

    NameDescriptionMin*Max*Units
    prPrecipitation amount0690.44mm, daily total
    rmaxMaximum relative humidity1.05100%
    rminMinimum relative humidity0100%
    sphSpecific humididy00.02kg/kg
    sradSurface downward shortwave radiation0455.61W/m^2
    thWind directionDegrees clockwise from North
    tmmnMinimum temperature225.54314.88K
    tmmxMaximum temperature233.08327.14K
    vsWind velocity at 10m0.1429.13m/s
    ercEnergy release component0131.85NFDRS fire danger index
    etoDaily reference evapotranspiration017.27grass, mm
    biBurning index0214.2NFDRS fire danger index
    fm100100-hour dead fuel moisture0.2833.2%
    fm10001000-hour dead fuel moisture0.3647.52%
    etrDaily reference evapotranspiration027.02Alfalfa, mm
    vpdMean vapor pressure deficit09.83kPa

    * = Values are estimated

    NameTypeDescription
    statusString'early', 'provisional', or 'permanent'

     This work (METDATA, by John Abatzoglou) is in the public domain and is free of known copyright restrictions. Users should properly cite the source used in the creation of any reports and publications resulting from the use of this dataset and note the date when the data was acquired.

    数据引用:

    Abatzoglou J. T., Development of gridded surface meteorological data for ecological applications and modelling, International Journal of Climatology. (2012) doi:10.1002/joc.3413

    下载代码:

     

    1. var table = ee.Geometry.Polygon([ [-111.28567358070336,37.88479180709053],[-110.73635717445336,37.88479180709053],[-111.28567358070336,38.265323220490416],[-111.28567358070336,37.88479180709053] ])
    2. Map.centerObject(table)
    3. var date1 = ee.Date('1999-01-01')
    4. var date2 = ee.Date('1999-01-03')
    5. var dataset = ee.ImageCollection('IDAHO_EPSCOR/GRIDMET')
    6. .filter(ee.Filter.date(date1, date2))
    7. .filterBounds(table);
    8. var tmax_p97 = dataset.select('tmmx').reduce(ee.Reducer.percentile([97])).clip(table);
    9. var tmax_p97Vis = {
    10. min: 300.0,
    11. max: 314.0,
    12. palette: ['blue', 'green', 'yellow', 'orange', 'red'],
    13. };
    14. Map.addLayer(tmax_p97, tmax_p97Vis, 'Maximum Temperature p97');
    15. var image = dataset.select('tmmx').mean().clip(table);
    16. var projection = image.projection().getInfo()
    17. Export.image.toDrive({
    18. image: tmax_p97,
    19. description: 'Max_temp_p97_',
    20. scale: 4638.3,
    21. maxPixels: 1e13,
    22. crs: 'EPSG:3857',
    23. crsTransform: projection.transform,
    24. region: table
    25. });

     

  • 相关阅读:
    保姆级教程带你从0到1实现基于bitcask的kv存储引擎
    commons-io
    【JPA】批量操作数据时耗时长的问题解决方案
    【AD】【PCB封装规范计划】 -CON排针类
    C++【多态】
    Mysql存储函数
    单链表的递归详解 (leetcode习题+ C++实现)
    PerfView专题 (第九篇):洞察 C# 中的 LOH 内存碎片化
    手机取证基础知识(一)
    将OpenCV配置到本地开发环境
  • 原文地址:https://blog.csdn.net/qq_31988139/article/details/126396354