• 卷积神经网络应用实例,卷积神经网络实际应用


    卷积神经网络的Java实现有哪些

    卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

    2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

    它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

    3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

    然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

    谷歌人工智能写作项目:爱发猫

    怎样用python构建一个卷积神经网络模型

    上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出好文案

    实验输入仍然采用MNIST图像使用10个featuremap时,卷积和pooling的结果分别如下所示。

    部分源码如下:[python] viewplain copy#coding=utf-8'''''Created on 2014年11月30日@author: Wangliaofan'''import numpyimport structimport matplotlib.pyplot as pltimport mathimport randomimport copy#testfrom BasicMultilayerNeuralNetwork import BMNN2def sigmoid(inX):if (-inX)== 0.0:return 999999999.999999999return 1.0/((-inX))def difsigmoid(inX):return sigmoid(inX)*(1.0-sigmoid(inX))def tangenth(inX):return (1.0*(inX)-1.0*(-inX))/(1.0*(inX)+1.0*(-inX))def cnn_conv(in_image, filter_map,B,type_func='sigmoid'):#in_image[num,feature map,row,col]=>in_image[Irow,Icol]#features map[k filter,row,col]#type_func['sigmoid','tangenth']#out_feature[k filter,Irow-row+1,Icol-col+1]shape_image=numpy.shape(in_image)#[row,col]#print "shape_image",shape_imageshape_filter=numpy.shape(filter_map)#[k filter,row,col]if shape_filter[1]>shape_image[0] or shape_filter[2]>shape_image[1]:raise Exceptionshape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)out_feature=numpy.zeros(shape_out)k,m,n=numpy.shape(out_feature)for k_idx in range(0,k):#rotate 180 to calculate convc_filter=numpy.rot90(filter_map[k_idx,:,:], 2)for r_idx in range(0,m):for c_idx in range(0,n):#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)(conv_temp)if type_func=='sigmoid':out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])elif type_func=='tangenth':out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])else:raise Exceptionreturn out_featuredef cnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):k,row,col=numpy.shape(out_feature)max_index_Matirx=numpy.zeros((k,row,col))out_row=int(numpy.floor(row/pooling_size))out_col=int(numpy.floor(col/pooling_size))out_pooling=numpy.zeros((k,out_row,out_col))for k_idx in range(0,k):for r_idx in range(0,out_row):for c_idx in range(0,out_col):temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]out_pooling[k_idx,r_idx,c_idx](temp_matrix)max_index=numpy.argmax(temp_matrix)#print max_index#print max_index/pooling_size,max_index%pooling_sizemax_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1return out_pooling,max_index_Matirxdef poolwithfunc(in_pooling,W,B,type_func='sigmoid'):k,row,col=numpy.shape(in_pooling)out_pooling=numpy.zeros((k,row,col))for k_idx in range(0,k):for r_idx in range(0,row):for c_idx in range(0,col):out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])return out_pooling#out_feature is the out put of convdef backErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):k1,row,col=numpy.shape(out_feature)error_conv=numpy.zeros((k1,row,col))k2,theta_row,theta_col=numpy.shape(theta)if k1!=k2:raise Exceptionfor idx_k in range(0,k1):for idx_row in range( 0, row):for idx_col in range( 0, col):error_conv[idx_k,idx_row,idx_col]=\max_index_Matirx[idx_k,idx_row,idx_col]*\float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*\difsigmoid(out_feature[idx_k,idx_row,idx_col])return error_convdef backErrorfromConvToInput(theta,inputImage):k1,row,col=numpy.shape(theta)#print "theta",k1,row,coli_row,i_col=numpy.shape(inputImage)if row>i_row or col> i_col:raise Exceptionfilter_row=i_row-row+1filter_col=i_col-col+1detaW=numpy.zeros((k1,filter_row,filter_col))#the same with conv valid in matlabfor k_idx in range(0,k1):for idx_row in range(0,filter_row):for idx_col in range(0,filter_col):subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]#print "subInputMatrix",numpy.shape(subInputMatrix)#rotate theta 180#print numpy.shape(theta)theta_rotate=numpy.rot90(theta[k_idx,:,:], 2)#print "theta_rotate",theta_rotate(subInputMatrix,theta_rotate)detaW[k_idx,idx_row,idx_col](dotMatrix)detaB=numpy.zeros((k1,1))for k_idx in range(0,k1):detaB[k_idx](theta[k_idx,:,:])return detaW,detaBdef loadMNISTimage(absFilePathandName,datanum=60000):images=open(absFilePathandName,'rb')()index=0magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)print magic, numImages , numRows , numColumnsindex += struct.calcsize('>IIII')if magic != 2051:raise Exceptiondatasize=int(784*datanum)datablock=">"+str(datasize)+"B"#nextmatrix=struct.unpack_from('>47040000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)/255.0#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)return nextmatrix, numImagesdef loadMNISTlabels(absFilePathandName,datanum=60000):labels=open(absFilePathandName,'rb')()index=0magic, numLabels  = struct.unpack_from('>II' , buf , index)print magic, numLabelsindex += struct.calcsize('>II')if magic != 2049:raise Exceptiondatablock=">"+str(datanum)+"B"#nextmatrix=struct.unpack_from('>60000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)return nextmatrix, numLabelsdef simpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):decayRate=0.01MNISTimage,num1=loadMNISTimage("F:\Machine Learning\UFLDL\data\common\\train-images-idx3-ubyte",imageNum)print num1row,col=numpy.shape(MNISTimage[0,0,:,:])out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)MLP.setTrainDataNum(imageNum)MLP.loadtrainlabel("F:\Machine Learning\UFLDL\data\common\\train-labels-idx1-ubyte")MLP.initialweights()#MLP.printWeightMatrix()rng = numpy.random.RandomState(23455)W_shp = (numofFilter, filter_size, filter_size)W_bound = (numofFilter * filter_size * filter_size)W_k=rng.uniform(low=-1.0 / W_bound,high=1.0 / W_bound,size=W_shp)B_shp = (numofFilter,)B= numpy.asarray(rng.uniform(low=-.5, high=.5, size=B_shp))cIter=0while cIter。

    怎样用python构建一个卷积神经网络

    用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客。

    #coding:utf-8'''    GPU run command:        THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python     CPU run command:        python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。

    现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。

    '''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom  import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024)  # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。

    1表示输入的图片的通道,灰度图为1通道。

    #border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。

    4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。

    #Dense就是隐藏层。16就是上一层输出的特征图个数。

    4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。

    verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。

    #validation_split=0.2,将20%的数据作为验证集。

    (data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator(        featurewise_center=True, # set input mean to 0 over the dataset        samplewise_center=False, # set each sample mean to 0        featurewise_std_normalization=True, # divide inputs by std of the dataset        samplewise_std_normalization=False, # divide each input by its std        zca_whitening=False, # apply ZCA whitening        rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)        width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)        height_shift_range=0.2, # randomly shift images vertically (fraction of total height)        horizontal_flip=True, # randomly flip images        vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch):    print('-'*40)    print('Epoch', e)    print('-'*40)    print("Training...")    # batch train with realtime data augmentation    progbar = generic_utils.Progbar(data.shape[0])    for X_batch, Y_batch in (data, label):        loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)        (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。

    如何用c++在mnist上实现一个简单的卷积神经网络,有哪些参考资料

    SVM方面,首选的肯定是LIBSVM这个库,应该是应用最广的机器学习库了。下面主要一些DeepLearning的GitHub项目吧!

    convnetjs-Star:2200+实现了卷积神经网络,可以用来做分类,回归,强化学习等。

    2.DeepLearnToolbox-Star:1000+Matlab实现中最热的库存,包括了CNN,DBN,SAE,CAE等主流模型。

    3.DeepLearning(yusugomo)-Star:800+实现了深度学习网络,从算法与实现上都比较全,提供了5种语言的实现:Python,C/C++,Java,Scala,实现的模型有DBN/CDBN/RBM/CRBM/dA/SdA/LR等。

    4.Neural-Networks-And-Deep-Learning-Star:500+这是同名书的配套代码,语言是Python。

    5.rbm-mnist-Star:200+这个是hintonmatlab代码的C++改写版,还实现了Rasmussen的共轭梯度ConjugateGradient算法。

  • 相关阅读:
    leetcode:滑动窗口----3. 无重复字符的最长子串
    vue的使用及绑定和一些vue指令
    Linux中的主要系统调用
    uniApp问题清单与经验
    详解 Spark 编程之 RDD 依赖关系
    Todolist案例vue写法
    【前端】JavaScript —— JS的基本语法之数组, 函数....
    Python的web自动化学习(二)Selenium安装和环境配置
    Python中那些简单又好用的特性和用法
    冒泡,选择,插入,希尔,快速,归并
  • 原文地址:https://blog.csdn.net/kfc67269/article/details/126465338