题意
给定一个大小为
n
n
n 的多重集
A
=
{
a
1
,
a
2
,
⋯
,
a
n
}
A = \{a_1, a_2, \cdots,a_n\}
A={a1,a2,⋯,an} 和两个非负整数
k
,
t
k, t
k,t,求
∑
S
⊆
A
,
S
≠
∅
t
∣
S
∣
(
∑
i
∈
S
i
)
k
\sum_{S \subseteq A,S \ne \varnothing } t ^ {|S|} \left ( \sum_{i \in S} i \right ) ^ k
S⊆A,S=∅∑t∣S∣(i∈S∑i)k
保证
k
=
0
k=0
k=0 时没有子集的和是
0
0
0,对
998
244
353
998 \, 244 \,353
998244353 取模。
( 1 ≤ n ≤ 1 0 2 , 0 ≤ k ≤ 1 0 4 , 0 ≤ x , a i < 988244352 ) (1 \le n \le 10 ^ 2, 0 \le k \le 10 ^4, 0 \le x,a_i < 988244352) (1≤n≤102,0≤k≤104,0≤x,ai<988244352)
分析:
若直接枚举子集复杂度为
O
(
n
×
2
n
)
O(n \times 2 ^ n)
O(n×2n),无法接受,考虑化简,右边和式的
k
k
k 次方可以做一下展开,那么
(
∑
i
∈
S
i
)
k
=
(
i
1
+
i
2
+
⋯
+
i
∣
S
∣
)
×
⋯
×
(
i
1
+
i
2
+
⋯
+
i
∣
S
∣
)
⏟
k
项
\left ( \sum\limits_{i \in S} i \right ) ^ k = \underbrace{(i_1 + i_2+ \cdots+i_{|S|}) \times \cdots \times (i_1 + i_2+ \cdots+i_{|S|})}_{k项}
(i∈S∑i)k=k项
(i1+i2+⋯+i∣S∣)×⋯×(i1+i2+⋯+i∣S∣)
也就是在
i
1
,
i
2
,
⋯
,
i
∣
S
∣
i_1,i_2,\cdots,i_{|S|}
i1,i2,⋯,i∣S∣ 中任选
k
k
k 个可重复的数的所有乘积和,考虑
A
A
A 中每个数
a
i
a_i
ai 的贡献,对于每个
a
i
a_i
ai 都有选与不选两种状态,组成了集合
S
S
S,那么假设不考虑后面的
k
k
k 次方和式,我们可以写出生成函数
(
1
+
t
x
)
n
(1 + tx) ^ n
(1+tx)n,但是现在多乘了
k
k
k 次方和式,我们再只考虑这个和式,也就是说每个
a
i
a_i
ai 都可以被选
0
∼
k
0 \sim k
0∼k 次,而且随意排列,所以
EGF
\textbf{EGF}
EGF 为
1
+
a
i
1
!
x
+
a
i
2
2
!
x
2
+
⋯
+
a
i
k
k
!
x
k
1 + \frac{a_i}{1!}x + \frac{a_i ^ 2}{2!}x ^ 2 + \cdots + \frac{a_i ^ k}{k!}x ^ k
1+1!aix+2!ai2x2+⋯+k!aikxk
那么对于某个子集的贡献就为
[
x
k
]
∏
i
=
1
n
(
1
+
a
i
1
!
x
+
a
i
2
2
!
x
2
+
⋯
+
a
i
k
k
!
x
k
)
[x ^ k] \prod _ {i = 1} ^ n (1 + \frac{a_i}{1!}x + \frac{a_i ^ 2}{2!}x ^ 2 + \cdots + \frac{a_i ^ k}{k!}x ^ k)
[xk]i=1∏n(1+1!aix+2!ai2x2+⋯+k!aikxk)
所以只需要将这两个生成函数结合一下,也就是把这个
EGF
\textbf{EGF}
EGF 带入到每个
1
+
t
x
1 + tx
1+tx 中
∏
i
=
1
n
(
1
+
t
×
(
1
+
a
i
1
!
x
+
a
i
2
2
!
x
2
+
⋯
+
a
i
k
k
!
x
k
)
)
=
∏
i
=
1
n
(
1
+
t
+
t
×
a
i
1
!
x
+
t
×
a
i
2
2
!
x
2
+
⋯
+
t
×
a
i
k
k
!
x
k
)
\prod _{i = 1} ^ {n} \left (1 + t \times (1 + \frac{a_i}{1!}x + \frac{a_i ^ 2}{2!}x ^ 2 + \cdots + \frac{a_i ^ k}{k!}x ^ k) \right) \\ = \prod _{i = 1} ^ {n}\left (1 + t + \frac{t \times a_i}{1!}x + \frac{t \times a_i ^ 2}{2!}x ^ 2 + \cdots + \frac{t \times a_i ^ k}{k!}x ^ k\right)
i=1∏n(1+t×(1+1!aix+2!ai2x2+⋯+k!aikxk))=i=1∏n(1+t+1!t×aix+2!t×ai2x2+⋯+k!t×aikxk)
由于题目保证了
k
=
0
k=0
k=0 时没有子集的和是
0
0
0,所以如果
k
=
0
k = 0
k=0 答案需要减去
1
1
1,也就是空集的情况。
那么最后的答案就为 [ x k ] ∏ i = 1 n ( 1 + t + t × a i 1 ! x + t × a i 2 2 ! x 2 + ⋯ + t × a i k k ! x k ) − [ k = 0 ] [x ^ k] \prod\limits_{i = 1} ^ {n} (1 + t + \dfrac{t \times a_i}{1!}x + \dfrac{t \times a_i ^ 2}{2!}x ^ 2 + \cdots + \dfrac{t \times a_i ^ k}{k!}x ^ k) - [k=0] [xk]i=1∏n(1+t+1!t×aix+2!t×ai2x2+⋯+k!t×aikxk)−[k=0]
注意每次 NTT \texttt{NTT} NTT 卷积需要将大小设为 k k k,不然会超时。
#include
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
int norm(int x) {
if (x < 0) {
x += mod;
}
if (x >= mod) {
x -= mod;
}
return x;
}
template<class T>
T power(T a, int b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
struct Z {
int x;
Z(int x = 0) : x(norm(x)) {}
int val() const {
return x;
}
Z operator-() const {
return Z(norm(mod - x));
}
Z inv() const {
assert(x != 0);
return power(*this, mod - 2);
}
Z &operator*=(const Z &rhs) {
x = i64(x) * rhs.x % mod;
return *this;
}
Z &operator+=(const Z &rhs) {
x = norm(x + rhs.x);
return *this;
}
Z &operator-=(const Z &rhs) {
x = norm(x - rhs.x);
return *this;
}
Z &operator/=(const Z &rhs) {
return *this *= rhs.inv();
}
friend Z operator*(const Z &lhs, const Z &rhs) {
Z res = lhs;
res *= rhs;
return res;
}
friend Z operator+(const Z &lhs, const Z &rhs) {
Z res = lhs;
res += rhs;
return res;
}
friend Z operator-(const Z &lhs, const Z &rhs) {
Z res = lhs;
res -= rhs;
return res;
}
friend Z operator/(const Z &lhs, const Z &rhs) {
Z res = lhs;
res /= rhs;
return res;
}
friend istream &operator>>(istream &is, Z &a) {
i64 v;
is >> v;
a = Z(v);
return is;
}
friend ostream &operator<<(ostream &os, const Z &a) {
return os << a.val();
}
};
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i ++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i ++) {
if (rev[i] < i) {
swap(a[i], a[rev[i]]);
}
}
if (int(roots.size()) < n) {
int k = __builtin_ctz(roots.size());
roots.resize(n);
while ((1 << k) < n) {
Z e = power(Z(3), (mod - 1) >> (k + 1));
for (int i = 1 << (k - 1); i < (1 << k); i ++) {
roots[i << 1] = roots[i];
roots[i << 1 | 1] = roots[i] * e;
}
k ++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j ++) {
Z u = a[i + j], v = a[i + j + k] * roots[k + j];
a[i + j] = u + v, a[i + j + k] = u - v;
}
}
}
}
void idft(vector<Z> &a) {
int n = a.size();
reverse(a.begin() + 1, a.end());
dft(a);
Z inv = (1 - mod) / n;
for (int i = 0; i < n; i ++) {
a[i] *= inv;
}
}
struct Poly {
vector<Z> a;
Poly() {}
Poly(const vector<Z> &a) : a(a) {}
Poly(const initializer_list<Z> &a) : a(a) {}
int size() const {
return a.size();
}
void resize(int n) {
a.resize(n);
}
Z operator[](int idx) const {
if (idx < size()) {
return a[idx];
} else {
return 0;
}
}
Z &operator[](int idx) {
return a[idx];
}
Poly mulxk(int k) const {
auto b = a;
b.insert(b.begin(), k, 0);
return Poly(b);
}
Poly modxk(int k) const {
k = min(k, size());
return Poly(vector<Z>(a.begin(), a.begin() + k));
}
Poly divxk(int k) const {
if (size() <= k) {
return Poly();
}
return Poly(vector<Z>(a.begin() + k, a.end()));
}
friend Poly operator+(const Poly &a, const Poly &b) {
vector<Z> res(max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i ++) {
res[i] = a[i] + b[i];
}
return Poly(res);
}
friend Poly operator-(const Poly &a, const Poly &b) {
vector<Z> res(max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i ++) {
res[i] = a[i] - b[i];
}
return Poly(res);
}
friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
int sz = 1, tot = a.size() + b.size() - 1;
while (sz < tot) {
sz *= 2;
}
a.a.resize(sz);
b.a.resize(sz);
dft(a.a);
dft(b.a);
for (int i = 0; i < sz; i ++) {
a.a[i] = a[i] * b[i];
}
idft(a.a);
a.resize(tot);
return a;
}
friend Poly operator*(Z a, Poly b) {
for (int i = 0; i < int(b.size()); i ++) {
b[i] *= a;
}
return b;
}
friend Poly operator*(Poly a, Z b) {
for (int i = 0; i < int(a.size()); i ++) {
a[i] *= b;
}
return a;
}
Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
Poly deriv() const {
if (a.empty()) {
return Poly();
}
vector<Z> res(size() - 1);
for (int i = 0; i < size() - 1; i ++) {
res[i] = (i + 1) * a[i + 1];
}
return Poly(res);
}
Poly integr() const {
vector<Z> res(size() + 1);
for (int i = 0; i < size(); i ++) {
res[i + 1] = a[i] / (i + 1);
}
return Poly(res);
}
Poly inv(int m) const {
Poly x{a[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
}
return x.modxk(m);
}
Poly log(int m) const {
return (deriv() * inv(m)).integr().modxk(m);
}
Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
}
return x.modxk(m);
}
Poly pow(int k, int m) const {
int i = 0;
while (i < size() && a[i].val() == 0) {
i ++;
}
if (i == size() || 1LL * i * k >= m) {
return Poly(vector<Z>(m));
}
Z v = a[i];
auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
}
Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
}
return x.modxk(m);
}
Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
reverse(b.a.begin(), b.a.end());
return ((*this) * b).divxk(n - 1);
}
};
vector<Z> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i;
}
infact[n] = fact[n].inv();
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i;
}
}
void solve() {
int n, k, x;
cin >> n >> k >> x;
vector<int> a(n + 1);
for (int i = 1; i <= n; i ++) {
cin >> a[i];
}
vector<vector<Z>> f(n + 1, vector<Z>(k + 1));
for (int i = 1; i <= n; i ++) {
f[i][0] = 1 + x;
for (int j = 1; j <= k; j ++) {
f[i][j] = x * power(Z(a[i]), j) * infact[j];
}
}
function<Poly(int, int)> dc = [&](int l, int r) {
if (l == r) return Poly(f[l]);
int mid = l + r >> 1;
auto ans = dc(l, mid) * dc(mid + 1, r);
ans.resize(k + 1);
return ans;
};
cout << fact[k] * dc(1, n)[k] - !k << "\n";
}
signed main() {
init(1e4);
cin.tie(0) -> sync_with_stdio(0);
int T;
cin >> T;
while (T --) {
solve();
}
}