• 十五、修改VGG16网络来适应自己的需求


    一、VGG-16

    VGG-16神经网络是所训练的数据集为ImageNet
    ImageNet数据集中验证集和测试集一万五千张,有一千个类别
    在这里插入图片描述

    二、加载VGG-16神经网络模型

    VGG16模型使用说明
    torchvision.models.vgg16(pretrained=False)
    其中参数pretrained表示是否下载已经通过ImageNet数据集训练好的模型

    VGG16是基于ImageNet数据集的一个分类模型
    若pretrained为True,则会下载VGG网络架构以及通过训练ImageNet数据集所生成的权重参数等信息数据
    若pretrained为False,则仅下载VGG网络架构,进行加载即可

    import torchvision
    
    #imageNet_testset = torchvision.datasets.ImageNet("ImageNet",split="train",download=True,transform=torchvision.transforms.ToTensor())
    #RuntimeError: The dataset is no longer publicly accessible. You need to download the archives externally and place them in the root directory.
    #ImageNet数据集已经不支持datasets下载了,主要是这个数据集太大了
    
    
    #pretrained为False,不需要下载训练之后网络模型,只是下载一下网络框架
    #pretrained为True,需要下载经过训练的网络模型
    vgg16_false = torchvision.models.vgg16(pretrained=False)
    vgg16_true = torchvision.models.vgg16(pretrained=True)
    print(vgg16_false)
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
    )
    """
    
    print(vgg16_true)
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
    )
    """
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108

    由此可见,VGG16有30层,最后的线性层(6): Linear(in_features=4096, out_features=1000, bias=True)输出是1000,也就是1000分类任务的模型

    三、利用VGG-16神经网络训练CIFAR-10数据集

    ImageNet数据集是一千分类,CIFAR-10数据集是十分类
    VGG-16是基于ImageNet数据集一千分类任务的神经网络架构

    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
    )
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46

    最后的线性层(6): Linear(in_features=4096, out_features=1000, bias=True)输入时1000类别
    要想应用CIFAR-10数据集,可以再加一层线性层,将1000类转换输出10类即可
    改变一下VGG-16现有的网络结构即可

    方法一:再最后一层线性层之后再添加一层(in_features=1000, out_features=10)的线性层

    add_module(name="add_linear",module=nn.Linear(in_features=1000,out_features=10))

    import torchvision
    from torch import nn
    
    vgg16_false = torchvision.models.vgg16(pretrained=False)#加载未经ImageNet数据集训练的VGG16网络模型架构
    print(vgg16_false)#原始VGG16网络结构
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
    )
    """
    
    
    
    
    
    """
    向VGG中添加一个名叫add_linear的线性层Linear
    """
    vgg16_false.add_module(name="add_linear",module=nn.Linear(in_features=1000,out_features=10))
    print(vgg16_false)#向VGG中添加一个名叫add_linear的线性层Linear
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
      (add_linear): Linear(in_features=1000, out_features=10, bias=True)
    )
    """
    
    
    
    
    
    """
    再向classifier中添加一个名叫add_linear的线性层Linear
    """
    vgg16_false.classifier.add_module(name="add_linear_classifier",module=nn.Linear(in_features=1000,out_features=10))
    print(vgg16_false)#再向classifier中添加一层名叫add_linear_classifier的线性层Linear
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
        (add_linear_classifier): Linear(in_features=1000, out_features=10, bias=True)
      )
      (add_linear): Linear(in_features=1000, out_features=10, bias=True)
    )
    """
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170

    方法二:修改最后一层线性层(6): Linear,将其改为in_features=4096,out_features=10)

    import torchvision
    from torch import nn
    
    vgg16_false = torchvision.models.vgg16(pretrained=False)#加载未经ImageNet数据集训练的VGG16网络模型架构
    print(vgg16_false)
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
    )
    """
    
    vgg16_false.classifier[6] = nn.Linear(in_features=4096,out_features=10)
    print(vgg16_false)
    """
    VGG(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace=True)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace=True)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (6): ReLU(inplace=True)
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (8): ReLU(inplace=True)
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (13): ReLU(inplace=True)
        (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (15): ReLU(inplace=True)
        (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (18): ReLU(inplace=True)
        (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (20): ReLU(inplace=True)
        (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (22): ReLU(inplace=True)
        (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (25): ReLU(inplace=True)
        (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (27): ReLU(inplace=True)
        (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (29): ReLU(inplace=True)
        (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU(inplace=True)
        (2): Dropout(p=0.5, inplace=False)
        (3): Linear(in_features=4096, out_features=4096, bias=True)
        (4): ReLU(inplace=True)
        (5): Dropout(p=0.5, inplace=False)
        (6): Linear(in_features=4096, out_features=10, bias=True)
      )
    )
    """
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
  • 相关阅读:
    外设驱动库开发笔记45:MS4515DO压力传感器驱动
    linux 下如何通过 GDB 调试,查崩溃
    【计算机基础知识7】垃圾回收机制与内存泄漏
    Docker 常用命令
    本周三商店更新:多款套装下线,四款升级武器带异色皮肤返厂
    PyTorch主要组成模块 | 数据读入 | 模型构建 | 模型初始化 | 损失函数 | 优化器 | 训练与评估
    程序是如何运行的?
    Leetcode.740 删除并获得点数
    拯救者y9000k(2022版)安装ubuntu系统(解决wifi问题)
    HTML5期末考核大作业——学生网页设计作业源码HTML+CSS+JavaScript 中华美德6页面带音乐文化
  • 原文地址:https://blog.csdn.net/qq_41264055/article/details/126461881