• AI赋能药物研发的偶然与必然


    近三年来,AI技术为创新药研发赋能的成果渐显,多家AI制药企业基于先进的AI算法与庞大的数据湖,快速开发出一系列能满足迫切临床需求的新分子与新靶点,且已有药物管线进入临床试验阶段。头部跨国药企早已布局AI制药技术,2021-2022年相关上亿美元级的合作频现。中国本土药企与Biotech也纷纷参与其中,相关技术合作数量呈井喷态势。

    站在又一个前沿技术的风口,如何把握创新药的发展趋势和AI前沿技术的红利?针对这些问题,各位专家各抒己见,一致认为AI药物研发的“必然性”源于巨大的未被满足的临床需求,以及传统药物研发所需的巨量的时间和成本,研发成本的日益增加和成功率下降产生的矛盾,亟需一种新的技术来解决;而恰巧近年来AI技术的几个里程碑式的突破,如AlphaFold2帮助解决了困扰50多年的生物学难题 - 蛋白折叠,这些“偶然”遇到的重大进展使得AI从概念阶段快速进入实验验证阶段。
    “人工智能很重要的一个判断标准是 - 能预测还是能理解?人工智能最重要的是能理解,但现在的水平还达不到,不过现在预测做得非常好,人工智能可以从预测、优化和机器学习帮助我们极大增加对事物认识的广度、深度和维度。”李长青博士指出。

    有的放矢,埃格林的差异化AI药物研发

    首先,AI技术带来的是制药R&D模式的转变,在AI技术的加持下能极大地减少传统模式产生的试错成本,提高开发速度和成功率。而埃格林医药借助团队独有的美国FDA法规优势,更注重AI药物“D”端的后期研发,从制药标准和法规监管的角度来重新设计“端到端”研发平台,以“适应症选择”为突破点,从迫切临床需求出发,让AI技术的利箭“有的放矢”,进一步提高药物获批成功率。

    同时,李长青博士也提出,埃格林AI技术要达到的三个高度:
    第一、对研发管线在R&D中的重要表征做学习和理解;
    第二、通过“梯度学习”,找到使AI平台达到从化学结构到生物功能再到人体的“全程兼容”的方法论;
    第三、从政府监管的角度,让AI平台能对药物进行模拟审评。


    AI方法==>微生物活体药

    序列预测

    蛋白质优化

    蛋白折叠

    分子生成、优化、筛选

    靶点==>PCB

    逆结构问题

    分子结构==>成药性==>临床

    行业前瞻,埃格林CMO李长青博士与国内知名AI药企高管共话制药“新趋势” -深圳埃格林医药有限公司

  • 相关阅读:
    菜鸡的秋招升级打怪之旅
    多云管理产品组合VMware Aria,开启多云管理新篇章
    [激光原理与应用-19]:《激光原理与技术》-5- 激光器的增益、损耗、自激振荡条件
    【附源码】Python计算机毕业设计培训中心管理系统
    【Linux】31个普通信号
    Java基础——final关键字
    第3周学习:ResNet+ResNeXt
    【算法】复习搜索与图论
    利用代码生成工具快速生成基于SqlSugar框架的Winform界面项目
    Java开发学习(二)----IOC、DI入门案例
  • 原文地址:https://blog.csdn.net/weixin_43135178/article/details/126455479