• 【洛谷】P2893 Making the Grade G


    题目地址:

    https://www.luogu.com.cn/problem/P2893

    题目描述:
    A straight dirt road connects two fields on FJ’s farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

    You are given N N N integers A 1 , . . . , A N A_1, ... , A_N A1,...,AN( 1 ≤ N ≤ 2 , 000 1 ≤ N ≤ 2,000 1N2,000) describing the elevation ( 0 ≤ A i ≤ 1 , 000 , 000 , 000 0 ≤ A_i ≤ 1,000,000,000 0Ai1,000,000,000) at each of N N N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B 1 , . . . . , B N B_1, . ... , B_N B1,....,BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

    ∣ A 1 − B 1 ∣ + ∣ A 2 − B 2 ∣ + . . . + ∣ A N − B N ∣ |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| A1B1+A2B2+...+ANBNPlease compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

    农夫约翰想改造一条路,原来的路的每一段海拔是 A i A_i Ai,修理后是 B i B_i Bi,花费 ∣ A i – B i ∣ |A_i – B_i| AiBi。我们要求修好的路是单调不升或者单调不降的。求最小花费。

    输入格式:
    Line 1 1 1: A single integer: N N N
    Lines 2.. N + 1 2..N+1 2..N+1: Line i + 1 i+1 i+1 contains a single integer elevation: A i A_i Ai

    输出格式:
    Line 1 1 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

    参考https://blog.csdn.net/qq_46105170/article/details/126434434。代码如下:

    #include 
    #include 
    #include 
    using namespace std;
    
    const int N = 2010;
    int n, a[N];
    
    int work() {
      priority_queue<int> heap;
      int res = 0;
      for (int i = 1; i <= n; i++) {
        heap.push(a[i]);
        if (a[i] < heap.top()) {
          res += heap.top() - a[i];
          heap.pop();
          heap.push(a[i]);
        }
      }
    
      return res;
    }
    
    int main() {
      scanf("%d", &n);
      for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    
      int res = work();
      reverse(a + 1, a + 1 + n);
      res = min(res, work());
      printf("%d\n", res);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间 O ( n ) O(n) O(n)

  • 相关阅读:
    需求分析与系统设计 原书第3版
    SpringCloud学习(三)——Ribbon负载均衡
    [附源码]计算机毕业设计springboot项目管理系统的专家评审模块
    关于LinkedBlockingQueue的offer的正确用法,如何保证阻塞
    【JS】sort() 对数组元素进行排序
    腾讯云抱歉不满足产品首购条件解决方法
    linux 进程组和会话和线程
    1 评价类算法:层次分析法笔记(附Python代码)
    helm2.0安装及部署
    CDH安装过程中出现的问题- CDH启动agent失败
  • 原文地址:https://blog.csdn.net/qq_46105170/article/details/126446885