• 使用pytorch实现深度可分离卷积改进模型的实战实践


    这一篇是前面一篇的续集,使用深度可分离进行改进,使得网络尽量能在低端的设备快速运行。先简单解释深度可分离,然后将这个思想应用于改进网络。这样的做法同样可以用深度可分离之外的很多网络结构去修改原来的网络,实现性能或者准确度的目标。

    前面的文章在这:

    pytorch复现经典生成对抗式的超分辨率网络

    深度可分离:

    深度可分离分为深度卷积部分和点卷积部分。深度卷积部分使用分组卷积,分组数等于输入的通道数。然后使用 1 × 1 1\times 1 1×1的普通点卷积实现不同通道信息的融合。然后在深度卷积和点卷积中间加上批归一化层和激活层即可。改成深度可分离卷积后的网络如下图所示:

    在这里插入图片描述

    pytorch实现深度可分离的生成模型:

    代码中的:class GeneratorDepthwiseBlock(nn.Module):就是深度可分离卷积模块。然后Generator中使用config.G.base_block_type来区别不同的基本模块类型。

    import torch
    from torch import nn
    import torchvision
    from torch import Tensor
    
    class GeneratorDepthwiseBlock(nn.Module):
        """
        生成器重复的部分,使用深度可分离卷积的思想
        """
    
        def __init__(self, channel, kernel_size) -> None:
            super(GeneratorDepthwiseBlock, self).__init__()
    
            self.channel = channel
            self.conv11 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                    kernel_size=(kernel_size, kernel_size),
                                    stride=(1, 1), padding=(1, 1), groups=channel)
            self.bn11 = nn.BatchNorm2d(num_features=channel)
            self.p_relu11 = nn.PReLU()
            self.conv12 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                    kernel_size=(1, 1), stride=(1, 1))
            self.bn12 = nn.BatchNorm2d(num_features=channel)
            self.p_relu12 = nn.PReLU()
    
            self.conv21 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                    kernel_size=(kernel_size, kernel_size),
                                    stride=(1, 1), padding=(1, 1), groups=channel)
            self.bn21 = nn.BatchNorm2d(num_features=channel)
            self.conv22 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                    kernel_size=(1, 1), stride=(1, 1))
            self.bn22 = nn.BatchNorm2d(num_features=channel)
    
        def forward(self, x: Tensor) -> Tensor:
            """
            前向推断
            :param x:
            :return:
            """
            identity = x
            out = self.conv11(x)
            out = self.bn11(out)
            out = self.p_relu11(out)
            out = self.conv12(out)
            out = self.bn12(out)
            out = self.p_relu12(out)
    
            out = self.conv21(out)
            out = self.bn21(out)
            out = self.conv22(out)
            out = self.bn22(out)
            out += identity
            return out
    
    
    class GeneratorBasicBlock(nn.Module):
        """
        生成器重复的部分
        """
    
        def __init__(self, channel, kernel_size) -> None:
            super(GeneratorBasicBlock, self).__init__()
    
            self.channel = channel
            self.conv1 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                   kernel_size=(kernel_size, kernel_size),
                                   stride=(1, 1), padding=(1, 1))
            self.bn1 = nn.BatchNorm2d(num_features=channel)
            self.p_relu1 = nn.PReLU()
            self.conv2 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                   kernel_size=(kernel_size, kernel_size),
                                   stride=(1, 1), padding=(1, 1))
            self.bn2 = nn.BatchNorm2d(num_features=channel)
    
        def forward(self, x: Tensor) -> Tensor:
            """
            前向推断
            :param x:
            :return:
            """
            identity = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.p_relu1(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            out += identity
            return out
    
    
    class PixelShufflerBlock(nn.Module):
        """
        生成器最后的pixelshuffler
        """
    
        def __init__(self, in_channel, out_channel) -> None:
            super(PixelShufflerBlock, self).__init__()
            self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                                   kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.pixels_shuffle = nn.PixelShuffle(upscale_factor=2)
            self.prelu = nn.PReLU()
    
        def forward(self, x: Tensor) -> Tensor:
            """
            前向
            """
            out = self.conv1(x)
            out = self.pixels_shuffle(out)
            out = self.prelu(out)
            return out
    
    
    class Generator(nn.Module):
        """
        生成器
        """
    
        def __init__(self, config) -> None:
            # Generator parameters
            super(Generator, self).__init__()
            large_kernel_size = config.G.large_kernel_size  # = 9
            small_kernel_size = config.G.small_kernel_size  # = 3
            n_channels = config.G.n_channels  # = 64
            n_blocks = config.G.n_blocks  # = 16
            base_block_type = config.G.base_block_type  # 'depthwise_conv_residual'  # 'conv_residual' or 'depthwise_conv_residual'
    
            # base block
            if base_block_type == 'depthwise_conv_residual':
                self.repeat_block = GeneratorDepthwiseBlock
            if base_block_type == 'conv_residual':
                self.repeat_block = GeneratorBasicBlock
    
            self.conv1 = nn.Conv2d(in_channels=3, out_channels=n_channels,
                                   kernel_size=(large_kernel_size, large_kernel_size),
                                   stride=(1, 1), padding=(4, 4))
            self.prelu1 = nn.PReLU()
            self.B_residul_block = self._make_layer(self.repeat_block, n_channels,
                                                    n_blocks, small_kernel_size)
            self.conv2 = nn.Conv2d(in_channels=n_channels, out_channels=n_channels,
                                   kernel_size=(small_kernel_size, small_kernel_size),
                                   stride=(1, 1), padding=(1, 1))
            self.bn1 = nn.BatchNorm2d(n_channels)
            self.pixel_shuffle_block1 = PixelShufflerBlock(n_channels, 4 * n_channels)
            self.pixel_shuffle_block2 = PixelShufflerBlock(n_channels, 4 * n_channels)
            self.conv3 = nn.Conv2d(in_channels=n_channels, out_channels=3,
                                   kernel_size=(large_kernel_size, large_kernel_size),
                                   stride=(1, 1), padding=(4, 4))
    
        def _make_layer(self, base_block, n_channels, n_block, kernel_size) -> nn.Sequential:
            """
            构建重复的B个基本块
            :param base_block: 基本块
            :param n_channels: 块里面的通道数
            :param n_block: 块数
            :return:
            """
            layers = []
            self.base_block = base_block
            for _ in range(n_block):
                layers.append(self.base_block(n_channels, kernel_size))
            return nn.Sequential(*layers)
    
        def _forward_impl(self, x: Tensor) -> Tensor:
            """
            前向的实现
            """
            out = self.conv1(x)
            out = self.prelu1(out)
            identity = out
            out = self.B_residul_block(out)
            out = self.conv2(out)
            out = self.bn1(out)
            out += identity
            out = self.pixel_shuffle_block1(out)
            out = self.pixel_shuffle_block2(out)
            out = self.conv3(out)
    
            return out
    
        def forward(self, x: Tensor) -> Tensor:
            """
            前向
            """
            return self._forward_impl(x)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
  • 相关阅读:
    StackExchange.Redis 高并发下timeout超时问题如何解决?
    5G终端标识SUPI,SUCI及IMSI解析
    机器视觉面试-查漏补缺
    机器人冗余自由度优化过程中的零空间概念
    Java:雇佣Java程序员来实现你的软件和应用目标!
    Consummer<T>函数式接口中的andThen方法
    大数据讲课笔记1.5 使用Vim编辑器
    【多线程 (一)】实现多线程的三种方式、线程休眠、线程优先级、守护线程
    如何在WIndows虚拟机安装 macOS 黑苹果系统?
    elasticsearch内存占用详细分析
  • 原文地址:https://blog.csdn.net/KPer_Yang/article/details/126445630