• 【无标题】


    有哪些深度神经网络模型?

    目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等。

    递归神经网络实际.上包含了两种神经网络。

    一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构递归形成更加复杂的深度网络。

    RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。

    关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

    这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

    谷歌人工智能写作项目:小发猫

    深度学习主要是学习哪些算法?

    深度学习(也称为深度结构化学习或分层学习)是基于人工神经网络的更广泛的机器学习方法族的一部分常见的神经网络结构。学习可以是有监督的、半监督的或无监督的。

    深度学习架构,例如深度神经网络、深度信念网络、循环神经网络和卷积神经网络,已经被应用于包括计算机视觉、语音识别、自然语言处理、音频识别、社交网络过滤、机器翻译、生物信息学、药物设计、医学图像分析、材料检查和棋盘游戏程序在内的领域,在这些领域中,它们的成果可与人类专家媲美,并且在某些情况下胜过人类专家。

    神经网络受到生物系统中信息处理和分布式通信节点的启发。人工神经网络与生物大脑有各种不同。具体而言,神经网络往往是静态和象征性的,而大多数生物的大脑是动态(可塑)和模拟的。

    定义深度学习是一类机器学习算法:使用多个层逐步从原始输入中逐步提取更高级别的特征。例如,在图像处理中,较低层可以识别边缘,而较高层可以识别对人类有意义的部分,例如数字/字母或面部。

    深度学习中常用的分类方法有哪些

    简单来说:1)深度学习(DeepLearning)只是机器学习(MachineLearning)的一种类别,一个子领域。

    机器学习>深度学习2)大数据(BigData)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述具体来说:1)机器学习(MachineLearning)是一个大的方向,里面包括了很多种approach,比如deeplearning,GMM,SVM,HMM,dictionarylearning,knn,Adaboosting不同的方法会使用不同的模型,不同的假设,不同的解法。

    这些模型可以是线性,也可以是非线性的。

    他们可能是基于统计的,也可能是基于稀疏的.不过他们的共同点是:都是data-driven的模型,都是学习一种更加abstract的方式来表达特定的数据,假设和模型都对特定数据广泛适用。

    好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。

    MachineLearning的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等.2)深度学习(DeepLearning)是机器学习的一个子类,一般特指学习高层数的网络结构。

    这个结构中通常会结合线性和非线性的关系。DeepLearning也会分各种不同的模型,比如CNN,RNN,DBN他们的解法也会不同。

    DeepLearning目前非常流行,因为他们在图像,视觉,语音等各种应用中表现出了很好的empiricalperformance。

    并且利用gpu的并行运算,在模型相当复杂,数据特别大量的情况下,依然可以达到很理想的学习速度。

    因为DeepLearning往往会构建多层数,多节点,多复杂度的模型,人们依然缺乏多里面学习的结构模型的理解。

    很多时候,DeepLearning甚至会被认为拥有类似于人类神经网络的结构,并且这种类似性被当做deeplearning居然更大potential的依据。

    但答主个人认为,其实这略有些牵强听起来更像是先有了这种network的结构,再找一个类似性。

    当然,这仅仅是个人观点(私货私货)3)大数据(BigData,我们也叫他逼格数据.)是对数据和问题的描述。

    通常被广泛接受的定义是3个V上的“大”:Volume(数据量),Velocity(数据速度)还有variety(数据类别)。

    大数据问题(Big-dataproblem)可以指那种在这三个V上因为大而带来的挑战。Volume很好理解。

    一般也可以认为是Large-scaledata(其实学术上用这个更准确,只是我们出去吹逼的时候就都叫bigdata了)。“大”可以是数据的维度,也可以是数据的size。

    一般claim自己是big-data的算法会比较scalable,复杂度上对这两个不敏感。

    算法和系统上,人们喜欢选择并行(Parallel),分布(distributed)等属性的方法来增加capability。ITjob----采集。

    深度神经网络目前有哪些成功的应用

    深度学习最成功的应用是在音视频的识别上,几乎所有的商用语音识别都是深度学习来完成的。其次深度学习应用最成功的领域就是图像识别,目前识别准确率已经超越人类。

    深度学习成了图像识别的标配,以至于目前做图像不懂深度学习都不好意思跟人打招呼。(这种状态个人觉得是不好的)其中图像识别中,应用最广的是人脸识别。

    自然语言理解方面,深度学习也非常活跃,主要是使用一种叫做LSTM的深度学习方法。

    深度学习已经深入各个领域无人车,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成深度神经网络目前有哪些成功的应用。

    深度学习是什么?

    深度学习,是机器学习中一种基于对数据进行表征学习的方法。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

    同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同。

    例如卷积神经网络就是一种深度的监督学习下的机器学习模型,而深度置信网就是一种无监督学习下的机器学习模型。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。

    如何训练深度神经网络

    deeplearinig就是神经网络的一类,就是解决的训练问题的深层神经网络,所以你这问题“深度学习会代替神经网络‘就不对,BP么,BP有自己的优势,也是很成熟的算法,做手写识别等等效果已经商用化了,不会被轻易替代。

    deeplearning远比BP要复杂,用来解决的问题也不是一个层面,所以也没有替代的必要。Deeplearning所涉及的问题大多数BP都没法解决的。度学习的概念源于人工神经网络的研究。

    含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

    深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

    深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

    系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。

    每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。

    它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。

    神经网络(深度学习)的几个基础概念

    从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。

    而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。

    具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。

    输入层-卷积层-降维层-卷积层-降维层--....--隐藏层-输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。

    特征是由网络自己选择。

  • 相关阅读:
    分析非学历培训管理系统系统架构及功能
    Golang基础 流程控制 条件判断
    2024年,提升Windows开发和使用体验的实践经验 - RIME输入法
    卫士之选:迅软DSE解决方案助力IT企业应对数据泄密威胁!
    Vue.js循环语句
    Springboot毕业设计毕设作品,微信校园疫情防控小程序设计与实现
    Java FilterWriter类的简介说明
    时序预测 | Pytorch实现TCN-Transformer的时间序列预测
    Gomodule和GoPath
    Jenkins发布失败记录
  • 原文地址:https://blog.csdn.net/super67269/article/details/126444054