Supported platforms: .NET Core 3.1, .NET Core 5.0 and above, .NET 4.6.2
Dynamic Expresso is an interpreter for simple C# statements written in .NET Standard 2.0.
Dynamic Expresso 是用 .NET Standard 2.0 编写的简单 C# 语句的解释器。
Dynamic Expresso embeds its own parsing logic, really interprets C# statements by converting it to .NET lambda expressions or delegates.
Dynamic Expresso 嵌入了自己的解析逻辑,通过将 C# 语句转换为 .NET lambda 表达式或委托来真正解释 C# 语句。
Using Dynamic Expresso developers can create scriptable applications, execute .NET code without compilation or create dynamic linq
statements.
使用 Dynamic Expresso 开发人员可以创建可编写脚本的应用程序,无需编译即可执行 .NET 代码或创建动态 linq 语句。
Statements are written using a subset of C# language specifications. Global variables or parameters can be injected and used inside
expressions. It doesn’t generate assembly but it creates an expression tree on the fly.
语句是使用 C# 语言规范的子集编写的。全局变量或参数可以在表达式中注入和使用。它不会生成程序集,但会动态创建表达式树。

例如,您可以评估数学表达式:
For example you can evaluate math expressions:
var interpreter = new Interpreter();
var result = interpreter.Eval("8 / 2 + 2");
或解析带有变量或参数的表达式并多次调用它:
or parse an expression with variables or parameters and invoke it multiple times:
var interpreter = new Interpreter().SetVariable("service", new ServiceExample());
string expression = "x > 4 ? service.OneMethod() : service.AnotherMethod()";
Lambda parsedExpression = interpreter.Parse(expression, new Parameter("x", typeof(int)));
var result = parsedExpression.Invoke(5);
或为 LINQ 查询生成委托和 lambda 表达式:
or generate delegates and lambda expressions for LINQ queries:
var prices = new [] { 5, 8, 6, 2 };
var whereFunction = new Interpreter().ParseAsDelegate<Func<int, bool>>("arg > 5");
var count = prices.Where(whereFunction).Count();
Dynamic Expresso live demo: http://dynamic-expresso.azurewebsites.net/
Dynamic Expresso is available on [NuGet]. You can install the package using:
PM> Install-Package DynamicExpresso.Core
Source code and symbols (.pdb files) for debugging are available on [Symbol Source].
dynamic (ExpandoObject for get properties, method invocation and indexes(#142), see #72. DynamicObject for get properties and indexes, see #142)You can parse and execute void expression (without a return value) or you can return any valid .NET type.
When parsing an expression you can specify the expected expression return type. For example you can write:
var target = new Interpreter();
double result = target.Eval<double>("Math.Pow(x, y) + 5",
new Parameter("x", typeof(double), 10),
new Parameter("y", typeof(double), 2));
The built-in parser can also understand the return type of any given expression so you can check if the expression returns what you expect.
Variables can be used inside expressions with Interpreter.SetVariable method:
var target = new Interpreter().SetVariable("myVar", 23);
Assert.AreEqual(23, target.Eval("myVar"));
Variables can be primitive types or custom complex types (classes, structures, delegates, arrays, collections, …).
Custom functions can be passed with delegate variables using Interpreter.SetFunction method:
Func<double, double, double> pow = (x, y) => Math.Pow(x, y);
var target = new Interpreter().SetFunction("pow", pow);
Assert.AreEqual(9.0, target.Eval("pow(3, 2)"));
Custom Expression can be passed by using Interpreter.SetExpression method.
Parsed expressions can accept one or more parameters:
var interpreter = new Interpreter();
var parameters = new[] {
new Parameter("x", 23),
new Parameter("y", 7)
};
Assert.AreEqual(30, interpreter.Eval("x + y", parameters));
Parameters can be primitive types or custom types. You can parse an expression once and invoke it multiple times with different parameter values:
var target = new Interpreter();
var parameters = new[] {
new Parameter("x", typeof(int)),
new Parameter("y", typeof(int))
};
var myFunc = target.Parse("x + y", parameters);
Assert.AreEqual(30, myFunc.Invoke(23, 7));
Assert.AreEqual(30, myFunc.Invoke(32, -2));
Either a variable or a parameter with name this can be referenced implicitly.
class Customer { public string Name { get; set; } }
var target = new Interpreter();
// 'this' is treated as a special identifier and can be accessed implicitly
target.SetVariable("this", new Customer { Name = "John" });
// explicit context reference via 'this' variable
Assert.AreEqual("John", target.Eval("this.Name"));
// 'this' variable is referenced implicitly
Assert.AreEqual("John", target.Eval("Name"));
Currently predefined types available are:
Object object
Boolean bool
Char char
String string
SByte Byte byte
Int16 UInt16 Int32 int UInt32 Int64 long UInt64
Single Double double Decimal decimal
DateTime TimeSpan
Guid
Math Convert
You can reference any other custom .NET type by using Interpreter.Reference method:
var target = new Interpreter().Reference(typeof(Uri));
Assert.AreEqual(typeof(Uri), target.Eval("typeof(Uri)"));
Assert.AreEqual(Uri.UriSchemeHttp, target.Eval("Uri.UriSchemeHttp"));
You can use the Interpreter.ParseAsDelegate method to directly parse an expression into a .NET delegate type that can be normally invoked.
In the example below I generate a Func delegate that can be used in a LINQ where expression.
您可以使用该Interpreter.ParseAsDelegate方法将表达式直接解析为可以正常调用的 .NET 委托类型。在下面的示例中,我生成了一个Func
class Customer
{
public string Name { get; set; }
public int Age { get; set; }
public char Gender { get; set; }
}
[Test]
public void Linq_Where()
{
var customers = new List<Customer> {
new Customer() { Name = "David", Age = 31, Gender = 'M' },
new Customer() { Name = "Mary", Age = 29, Gender = 'F' },
new Customer() { Name = "Jack", Age = 2, Gender = 'M' },
new Customer() { Name = "Marta", Age = 1, Gender = 'F' },
new Customer() { Name = "Moses", Age = 120, Gender = 'M' },
};
string whereExpression = "customer.Age > 18 && customer.Gender == 'F'";
var interpreter = new Interpreter();
Func<Customer, bool> dynamicWhere = interpreter.ParseAsDelegate<Func<Customer, bool>>(whereExpression, "customer");
Assert.AreEqual(1, customers.Where(dynamicWhere).Count());
}
This is the preferred way to parse an expression that you known at compile time what parameters can accept and what value must return.
You can use the Interpreter.ParseAsExpression method to directly parse an expression into a .NET lambda expression (Expression).
您可以使用该Interpreter.ParseAsExpression方法直接将表达式解析为 .NET lambda 表达式 ( Expression)。
In the example below I generate a Expression expression that can be used in a Queryable LINQ where expression or in any other place where an expression is required. Like Entity Framework or other similar libraries.
在下面的示例中,我生成了一个Expression
class Customer
{
public string Name { get; set; }
public int Age { get; set; }
public char Gender { get; set; }
}
[Test]
public void Linq_Queryable_Expression_Where()
{
IQueryable<Customer> customers = (new List<Customer> {
new Customer() { Name = "David", Age = 31, Gender = 'M' },
new Customer() { Name = "Mary", Age = 29, Gender = 'F' },
new Customer() { Name = "Jack", Age = 2, Gender = 'M' },
new Customer() { Name = "Marta", Age = 1, Gender = 'F' },
new Customer() { Name = "Moses", Age = 120, Gender = 'M' },
}).AsQueryable();
string whereExpression = "customer.Age > 18 && customer.Gender == 'F'";
var interpreter = new Interpreter();
Expression<Func<Customer, bool>> expression = interpreter.ParseAsExpression<Func<Customer, bool>>(whereExpression, "customer");
Assert.AreEqual(1, customers.Where(expression).Count());
}
Statements can be written using a subset of the C# syntax. Here you can find a list of the supported expressions:
可以使用 C# 语法的子集编写语句。在这里您可以找到支持的表达式列表:
Supported operators:
项目 | Value
| Category | Operators |
|---|---|
| Primary | x.y f(x) a[x] new typeof |
| Unary | + - ! (T)x |
| Multiplicative | * / % |
| Additive | + - |
| Relational and type testing | < > <= >= is as |
| Equality | == != |
| Logical AND | & |
| Logical OR | | |
| Logical XOR | ^ |
| Conditional AND | && |
| Conditional OR | || |
| Conditional | ?: |
| Assignment | = |
| Null coalescing | ?? |
Operators precedence is respected following C# rules (Operator precedence and associativity).
运算符优先级遵循C# 规则(运算符优先级和关联性)。
Some operators, like the assignment operator, can be disabled for security reason.
| Category | Operators |
|---|---|
| Constants | true false null |
| Real literal suffixes | d f m |
| Integer literal suffixes | u l ul lu |
| String/char | "" '' |
The following character escape sequences are supported inside string or char literals:
\' - single quote, needed for character literals\" - double quote, needed for string literals\\ - backslash\0 - Unicode character 0\a - Alert (character 7)\b - Backspace (character 8)\f - Form feed (character 12)\n - New line (character 10)\r - Carriage return (character 13)\t - Horizontal tab (character 9)\v - Vertical quote (character 11)可以调用任何标准的 .NET 方法、字段、属性或构造函数。
Any standard .NET method, field, property or constructor can be invoked.
var service = new MyTestService();
var context = new MyTestContext();
var target = new Interpreter()
.SetVariable("x", service)
.SetVariable("this", context);
Assert.AreEqual(service.HelloWorld(), target.Eval("x.HelloWorld()"));
Assert.AreEqual(service.AProperty, target.Eval("x.AProperty"));
Assert.AreEqual(service.AField, target.Eval("x.AField"));
// implicit context reference
Assert.AreEqual(context.GetContextId(), target.Eval("GetContextId()"));
Assert.AreEqual(context.ContextName, target.Eval("ContextName"));
Assert.AreEqual(context.ContextField, target.Eval("ContextField"));
var target = new Interpreter();
Assert.AreEqual(new DateTime(2015, 1, 24), target.Eval("new DateTime(2015, 1, 24)"));
Dynamic Expresso also supports:
var x = new int[] { 10, 30, 4 };
var target = new Interpreter()
.Reference(typeof(System.Linq.Enumerable))
.SetVariable("x", x);
Assert.AreEqual(x.Count(), target.Eval("x.Count()"));
array[0])params keyword)Dynamic Expresso has partial supports of lambda expressions. For example, you can use any Linq method:
Dynamic Expresso 部分支持 lambda 表达式。例如,您可以使用任何 Linq 方法:
var x = new string[] { "this", "is", "awesome" };
var options = InterpreterOptions.Default | InterpreterOptions.LambdaExpressions; // enable lambda expressions
var target = new Interpreter(options)
.SetVariable("x", x);
var results = target.Eval<IEnumerable<string>>("x.Where(str => str.Length > 5).Select(str => str.ToUpper())");
Assert.AreEqual(new[] { "AWESOME" }, results);
Note that parsing lambda expressions is disabled by default, because it has a slight performance cost.
To enable them, you must set the InterpreterOptions.LambdaExpressions flag.
It’s also possible to create a delegate directly from a lambda expression:
var options = InterpreterOptions.Default | InterpreterOptions.LambdaExpressions; // enable lambda expressions
var target = new Interpreter(options)
.SetVariable("increment", 3); // access a variable from the lambda expression
var myFunc = target.Eval<Func<int, string, string>>("(i, str) => str.ToUpper() + (i + increment)");
Assert.AreEqual("TEST8", lambda.Invoke(5, "test"));
By default all expressions are considered case sensitive (VARX is different than varx, as in C#).
There is an option to use a case insensitive parser. For example:
var target = new Interpreter(InterpreterOptions.DefaultCaseInsensitive);
double x = 2;
var parameters = new[] {
new Parameter("x", x.GetType(), x)
};
Assert.AreEqual(x, target.Eval("x", parameters));
Assert.AreEqual(x, target.Eval("X", parameters));
Sometimes you need to check which identifiers (variables, types, parameters) are used in expression before parsing it.
Maybe because you want to validate it or you want to ask the user to enter parameters value of a given expression.
Because if you parse an expression without the right parameter an exception is throwed.
In these cases you can use Interpreter.DetectIdentifiers method to obtain a list of used identifiers, both known and unknown.
var target = new Interpreter();
var detectedIdentifiers = target.DetectIdentifiers("x + y");
CollectionAssert.AreEqual(new[] { "x", "y" },
detectedIdentifiers.UnknownIdentifiers.ToArray());
In C #, numbers are usually interpreted as integers or doubles if they have decimal places.
在 C# 中,如果数字有小数位,通常会被解释为整数或双精度数。
In some cases it may be useful to be able to configure the default type of numbers if no particular suffix is specified: for example in financial calculations, where usually numbers are interpreted as decimal type.
在某些情况下,如果没有指定特定的后缀,那么配置默认数字类型可能会很有用:例如在金融计算中,通常将数字解释为十进制类型。
In these cases you can set the default number type using Interpreter.SetDefaultNumberType method.
在这些情况下,您可以使用方法设置默认号码类型Interpreter.SetDefaultNumberType 。
var target = new Interpreter();
target.SetDefaultNumberType(DefaultNumberType.Decimal);
Assert.IsInstanceOf(typeof(System.Decimal), target.Eval("45"));
Assert.AreEqual(10M/3M, target.Eval("10/3")); // 3.33333333333 instead of 3
Not every C# syntaxes are supported. Here some examples of NOT supported features:
method(arg) )dynamic objects (only property, method invocation and index now are supported)If there is an error during the parsing always an exception of type ParseException is throwed.
ParseException has several specialization classes based on the type of error (UnknownIdentifierException, NoApplicableMethodException. …).
The Interpreter class can be used by multiple threads but without modify it.
In essence only get properties, Parse and Eval methods are thread safe. Other methods (SetVariable, Reference, …) must be called in an initialization phase.
Lambda and Parameter classes are completely thread safe.
If you need to run the same expression multiple times with different parameters I suggest to parse it one time and then invoke the parsed expression multiple times.
If you allow an end user to write expression you must consider some security implications.
Parsed expressions can access only the .NET types that you have referenced using the Interpreter.Reference method or types that you pass as a variable or parameter.
You must pay attention of what types you expose.
In any case generated delegates are executed as any other delegate and standard security .NET rules can be applied (for more info see Security in the .NET Framework).
If expressions test can be written directly by users you must ensure that only certain features are available. Here some guidelines:
For example you can disable assignment operators, to ensure that the user cannot change some values that you don’t expect.
By default assignment operators are enables, by you can disable it using:
var target = new Interpreter().EnableAssignment(AssignmentOperators.None);
From version 1.3 to prevent malicious users to call unexpected types or assemblies within an expression,
some reflection methods are blocked. For example you cannot write:
var target = new Interpreter();
target.Eval("typeof(double).GetMethods()");
// or
target.Eval("typeof(double).Assembly");
The only exception to this rule is the Type.Name property that is permitted for debugging reasons.
To enable standard reflection features you can use Interpreter.EnableReflection method, like:
var target = new Interpreter().EnableReflection();
Here are some possible usage scenarios of Dynamic Expresso:
See github open issues and milestones.
If you need help you can try one of the following:
Currently Dynamic Expresso is maintained by @davideicardi and @metoule.
This project is based on two old works:
Thanks to all contributors!
Below you can find a list of some similar projects that I have evaluated or that can be interesting to study.
For one reason or another none of these projects exactly fit my needs so I decided to write my own interpreter.
A continuous integration pipeline is configured using Github Actions, see .github/workflows folder.
Whenever a new Release is created, Nuget packages are published. For snapshot releases packages are published only to Github.
For official releases packages are published to both GitHub and Nuget.
To compile the solution you can run:
dotnet build DynamicExpresso.sln -c Release
To create nuget packages:
dotnet pack DynamicExpresso.sln -c Release
To run unit tests:
dotnet test DynamicExpresso.sln -c Release
or run unit tests for a specific project with a specific framework:
dotnet test DynamicExpresso.sln --no-restore -c Release --verbosity normal -f netcoreapp3.1
Add --logger:trx to generate test results for VSTS.
See releases page.