• 【毕业设计】深度学习YOLO安检管制物品识别与检测 - python opencv



    0 前言

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

    为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

    🚩 **基于深度学习YOLO安检管制误判识别与检测 **

    🥇学长这里给一个题目综合评分(每项满分5分)

    • 难度系数:4分
    • 工作量:3分
    • 创新点:4分

    🧿 选题指导, 项目分享:

    https://gitee.com/dancheng-senior/project-sharing-1/blob/master/%E6%AF%95%E8%AE%BE%E6%8C%87%E5%AF%BC/README.md

    1 课题背景

    军事信息化建设一直是各国的研究热点,但我国的武器存在着种类繁多、信息散落等问题,这不利于国防工作提取有效信息,大大妨碍了我军信息化建设的步伐。同时,我军武器常以文字、二维图片和实体武器等传统方式进行展示,交互性差且无法满足更多军迷了解武器性能、近距离观赏或把玩武器的迫切需求。本文将改进后的Yolov5算法应用到武器识别中,将武器图片中的武器快速识别出来,提取武器的相关信息,并将其放入三维的武器展现系统中进行展示,以期让人们了解和掌握各种武器,有利于推动军事信息化建设。

    2 实现效果

    检测展示
    在这里插入图片描述

    3 卷积神经网络

    简介

    卷积神经网络 (CNN) 是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

    对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
    在这里插入图片描述

    相关代码实现

    cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

    conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
    conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
    pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
    conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
    conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
    pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
    conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
    conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
    pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
    conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
    conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
    pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
    
    flatten = tf.layers.flatten(pool4)
    fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
    fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
    fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
    fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
    fc3 = tf.layers.dense(fc2, 2, None)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    4 Yolov5

    我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

    目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO 一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

    YOLOv5有4个版本性能如图所示:
    在这里插入图片描述

    网络架构图

    在这里插入图片描述

    YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

    输入端

    模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

    Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
    在这里插入图片描述

    基准网络

    融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

    Neck网络

    在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

    在这里插入图片描述
    在这里插入图片描述

    FPN+PAN的结构
    在这里插入图片描述
    这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

    FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

    Head输出层

    输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

    对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

    ①==>40×40×255
    
    ②==>20×20×255
    
    ③==>10×10×255
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    在这里插入图片描述

    • 相关代码

      class Detect(nn.Module):
          stride = None  # strides computed during build
          onnx_dynamic = False  # ONNX export parameter
      
          def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
              super().__init__()
              self.nc = nc  # number of classes
              self.no = nc + 5  # number of outputs per anchor
              self.nl = len(anchors)  # number of detection layers
              self.na = len(anchors[0]) // 2  # number of anchors
              self.grid = [torch.zeros(1)] * self.nl  # init grid
              self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
              self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
              self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
              self.inplace = inplace  # use in-place ops (e.g. slice assignment)
      
          def forward(self, x):
              z = []  # inference output
              for i in range(self.nl):
                  x[i] = self.m[i](x[i])  # conv
                  bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                  x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
      
                  if not self.training:  # inference
                      if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                          self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
      
                      y = x[i].sigmoid()
                      if self.inplace:
                          y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                      else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                          xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                          y = torch.cat((xy, wh, y[..., 4:]), -1)
                      z.append(y.view(bs, -1, self.no))
      
              return x if self.training else (torch.cat(z, 1), x)
      
          def _make_grid(self, nx=20, ny=20, i=0):
              d = self.anchors[i].device
              if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
              else:
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
              grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
              anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                  .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
              return grid, anchor_grid
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49

    5 模型训练

    训练效果如下
    在这里插入图片描述
    相关代码

    #部分代码
    def train(hyp, opt, device, tb_writer=None):
        print(f'Hyperparameters {hyp}')
        log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directory
        wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory
        os.makedirs(wdir, exist_ok=True)
        last = wdir + 'last.pt'
        best = wdir + 'best.pt'
        results_file = log_dir + os.sep + 'results.txt'
        epochs, batch_size, total_batch_size, weights, rank = \
            opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank
        # TODO: Use DDP logging. Only the first process is allowed to log.
    
        # Save run settings
        with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
            yaml.dump(hyp, f, sort_keys=False)
        with open(Path(log_dir) / 'opt.yaml', 'w') as f:
            yaml.dump(vars(opt), f, sort_keys=False)
    
        # Configure
        cuda = device.type != 'cpu'
        init_seeds(2 + rank)
        with open(opt.data) as f:
            data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
        train_path = data_dict['train']
        test_path = data_dict['val']
        nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
        assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check
    
        # Remove previous results
        if rank in [-1, 0]:
            for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
                os.remove(f)
    
        # Create model
        model = Model(opt.cfg, nc=nc).to(device)
    
        # Image sizes
        gs = int(max(model.stride))  # grid size (max stride)
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples
    
        # Optimizer
        nbs = 64  # nominal batch size
        # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
        # all-reduce operation is carried out during loss.backward().
        # Thus, there would be redundant all-reduce communications in a accumulation procedure,
        # which means, the result is still right but the training speed gets slower.
        # TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
        # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
        accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
        hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    
        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        for k, v in model.named_parameters():
            if v.requires_grad:
                if '.bias' in k:
                    pg2.append(v)  # biases
                elif '.weight' in k and '.bn' not in k:
                    pg1.append(v)  # apply weight decay
                else:
                    pg0.append(v)  # all else
    
        if opt.adam:
            optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
        else:
            optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    
        optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71

    6 实现效果

    在这里插入图片描述

    7 最后

  • 相关阅读:
    循序渐进介绍基于CommunityToolkit.Mvvm 和HandyControl的WPF应用端开发(7) -- 图标列表展示和选择处理
    Java之juc旅途-atomic(五)
    B. Two-gram
    hive-udf
    redis中value/String
    读书笔记:《过度的医疗》
    prometheus的rules配置
    【C++】类和对象 _初始化列表 &必须使用初始化列表的三种情况【进阶篇 _复习专用】
    PID原理及python简单实现与调参
    EXCEL——计算数据分散程度的相关函数
  • 原文地址:https://blog.csdn.net/HUXINY/article/details/126435822