• 人工神经网络技术及应用,人工神经网络的优势


    机器人学习是人工神经网络的应用吗

    机器人学习是人工神经网络的应用的。人工神经网络的应用在语音识别、计算机视觉、机器人学习、语言翻译等领域,均战胜传统的机器学习方法,甚至在人脸验证、图像分类上还超过人类的识别能力。

    人工神经网络的前景:神经网络的前景,神经网络基础结构简单,理论上可以拟合各种数据状况,缺点也是因为结构简单,需要大规模的神经网络组合工作,而对这种复杂的网络目前的工具不足以驾驭。导致其演进缓慢。

    这是其本身自有的优缺点。如果一直没有克服,那就会有新的技术去替代这种结构。

    谷歌人工智能写作项目:小发猫

    人工智能未来的发展前景怎么样?

    趋势一:AI于各行业垂直领域应用具有巨大的潜力人工智能市场在零售、交通运输和自动化、制造业及农业等各行业垂直领域具有巨大的潜力A8U神经网络

    而驱动市场的主要因素,是人工智能技术在各种终端用户垂直领域的应用数量不断增加,尤其是改善对终端消费者服务。当然人工智能市场要起来也受到IT基础设施完善、智能手机及智能穿戴式设备的普及。

    其中,以自然语言处理(NLP)应用市场占AI市场很大部分。随着自然语言处理的技术不断精进而驱动消费者服务的成长,还有:汽车信息通讯娱乐系统、AI机器人及支持AI的智能手机等领域。

    趋势二:AI导入医疗保健行业维持高速成长由于医疗保健行业大量使用大数据及人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。

    此外AI还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。

    人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。

    趋势三:AI取代屏幕成为新UI/UX接口过去从PC到手机时代以来,用户接口都是透过屏幕或键盘来互动。

    随着智能喇叭(SmartSpeaker)、虚拟/增强现实(VR/AR)与自动驾驶车系统陆续进入人类生活环境,加速在不需要屏幕的情况下,人们也能够很轻松自在与运算系统沟通。

    这表示着人工智能透过自然语言处理与机器学习让技术变得更为直观,也变得较易操控,未来将可以取代屏幕在用户接口与用户体验的地位。人工智能除了在企业后端扮演重要角色外,在技术接口也可承担更复杂角色。

    例如:使用视觉图形的自动驾驶车,透过人工神经网络以实现实时翻译,也就是说,人工智能让接口变得更为简单且更有智能,也因此设定了未来互动的高标准模式。

    趋势四:未来手机芯片一定内建AI运算核心现阶段主流的ARM架构处理器速度不够快,若要进行大量的图像运算仍嫌不足,所以未来的手机芯片一定会内建AI运算核心。

    正如,苹果将3D感测技术带入iPhone之后,Android阵营智能手机将在明年跟进导入3D感测相关应用。趋势五:AI芯片关键在于成功整合软硬件AI芯片的核心是半导体及算法。

    AI硬件主要是要求更快指令周期与低功耗,包括GPU、DSP、ASIC、FPGA和神经元芯片,且须与深度学习算法相结合,而成功相结合的关键在于先进的封装技术。

    总体来说GPU比FPGA快,而在功率效能方面FPGA比GPU好,所以AI硬件选择就看产品供货商的需求考虑而定。

    例如,苹果的FaceID脸部辨识就是3D深度感测芯片加上神经引擎运算功能,整合高达8个组件进行分析,分别是红外线镜头、泛光感应组件、距离传感器、环境光传感器、前端相机、点阵投影器、喇叭与麦克风。

    苹果强调用户的生物识别数据,包含:指纹或脸部辨识都以加密形式储存在iPhone内部,所以不易被窃取。

    人工神经网络的发展趋势

    人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

    人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

    近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

    将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

    神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

    其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

    由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

    目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。下面主要就神经网络与小波分析、混沌、粗集理论、分形理论的融合进行分析。

    与小波分析的结合1981年,法国地质学家Morlet在寻求地质数据时,通过对Fourier变换与加窗Fourier变换的异同、特点及函数构造进行创造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。

    1986年以来由于YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速发展成为一门新兴学科。

    Meyer所著的小波与算子,Daubechies所著的小波十讲是小波研究领域最权威的著作。小波变换是对Fourier分析方法的突破。

    它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

    小波分析相当于一个数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。因此,小波分析已成为地球物理、信号处理、图像处理、理论物理等诸多领域的强有力工具。

    小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。

    在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。

    小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。

    小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。

    另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。混沌神经网络混沌第一个定义是上世纪70

  • 相关阅读:
    MFC C++ BMP图片向右旋转90度示例函数 WCHAR与CHAR互转 CStringW CStringA互转
    OpenCV自学笔记二十:图像分割和提取
    antd 表单校验问题记录&解决方案
    【操作系统】深入浅出死锁问题
    第九天 Python爬虫之Scrapy(框架工作原理 )
    one-hot和Embedding
    Linux——进程概念
    Uni-app 苹果应用打包与上线指南
    仿写el-upload组件,彻底搞懂文件上传
    Java微信小程序奶茶在线预定点单系统 uniapp小程序
  • 原文地址:https://blog.csdn.net/aifamao3/article/details/126429490