随着经济高速发展,经略海洋与海洋经济发展成为国家重要发展战略,港口设施建设和完善对于海洋经济发展有着重要作用。然而,港口重型机械以及轮机操作对作业人员安全有潜在威胁,智能化、信息化码头建设势在必行。近年计算机视觉和深度学习技术快速发展,为港口应用智能视觉技术提供了有力的技术支撑。基于深度学习框架YOLOV4搭建了港口作业人员目标检测平台,在自建港口收集并整理了一个大规模作业人员视频数据集,在该数据集上实现不同作业场景下港口作业人员的精确检测。在自建港口作业人员数据集上将Faster RCNN、SSD和YOLOV4三种目标检测框架进行实验对比,结果表明,YOLOV4的平均检测准确率优于其它目标检测框架。基于YOLOV4的港口作业人员检测系统应用提高了港口信息化建设进度,提高了港口作业人员的安全性。
0 引言
港口作业人员遇到意外的风险较高,操作不规范以及安全意识薄弱导致事故频发,为此走访调查了国内知名港口集团的作业人员工作现状[1],获取相应港口作业违规操作数据,如