修改表的名字
alter table 旧名字 rename 新名字;
新增字段
alter table 表名 add 字段 字段类型(数字) 约束条件;
alter table 表名 add 字段 字段类型(数字) 约束条件 after 已经存在的字段名; # 在已经存在的字段后面新增
alter table 表名 add 字段 字段类型(数字) 约束条件 first; # 字段信息新增到第一行
修改字段
alter table 表名 change 旧字段 新字段 新字段类型(数字) 约束条件;
alter table 表名 modify 字段名 字段类型(数字) 约束条件;
删除字段
alter table 表名 drop 字段名;
整体知识实操:
mysql> create table t1(
-> id int primary key auto_increment,
-> name varchar(32)
-> );
Query OK, 0 rows affected (0.13 sec)
mysql> desc t1;
+-------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(32) | YES | | NULL | |
+-------+-------------+------+-----+---------+----------------+
2 rows in set (0.06 sec)
mysql> alter table t1 rename ttt;
Query OK, 0 rows affected (0.05 sec)
mysql> alter table ttt add pwd int default 123;
Query OK, 0 rows affected (0.08 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> alter table ttt add gender enum('male', 'female') after name;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> alter table ttt add age int not null first;
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> alter table ttt change pwd password int not null;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> alter table ttt drop age;
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> desc ttt;
+----------+-----------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+-----------------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(32) | YES | | NULL | |
| gender | enum('male','female') | YES | | NULL | |
| password | int(11) | NO | | NULL | |
+----------+-----------------------+------+-----+---------+----------------+
4 rows in set (0.03 sec)
例题数据准备:
1.数据准备(直接拷贝)
create table emp(
id int not null unique auto_increment,
name varchar(20) not null,
sex enum('male','female') not null default 'male', #大部分是男的
age int(3) unsigned not null default 28,
hire_date date not null,
post varchar(50),
post_comment varchar(100),
salary double(15,2),
office int, #一个部门一个屋子
depart_id int
);
#三个部门:教学,销售,运营
insert into emp(name,sex,age,hire_date,post,salary,office,depart_id) values
('jason','male',18,'20170301','浦东第一帅形象代言',7300.33,401,1), #以下是教学部
('tom','male',78,'20150302','teacher',1000000.31,401,1),
('kevin','male',81,'20130305','teacher',8300,401,1),
('tony','male',73,'20140701','teacher',3500,401,1),
('owen','male',28,'20121101','teacher',2100,401,1),
('jack','female',18,'20110211','teacher',9000,401,1),
('jenny','male',18,'19000301','teacher',30000,401,1),
('sank','male',48,'20101111','teacher',10000,401,1),
('哈哈','female',48,'20150311','sale',3000.13,402,2),#以下是销售部门
('呵呵','female',38,'20101101','sale',2000.35,402,2),
('西西','female',18,'20110312','sale',1000.37,402,2),
('乐乐','female',18,'20160513','sale',3000.29,402,2),
('拉拉','female',28,'20170127','sale',4000.33,402,2),
('僧龙','male',28,'20160311','operation',10000.13,403,3), #以下是运营部门
('程咬金','male',18,'19970312','operation',20000,403,3),
('程咬银','female',18,'20130311','operation',19000,403,3),
('程咬铜','male',18,'20150411','operation',18000,403,3),
('程咬铁','female',18,'20140512','operation',17000,403,3);
select
自定义查询表中字段对应的数据
from
指定操作的对象(到底是哪张表 也可能是多张)
强调:
SQL语句的关键字编写顺序与执行顺序是不一致的!!!
eg: select name from emp;
肯定是先支持from确定表 之后执行select确定字段
编写SQL语句针对select和from可以先写个固定模板
select * from 表名 其他操作
select后的字段可能是实际的 也可能是通过SQL动态产生的 所以可以先用*占位最后再修改
模糊查询:
查询条件不清晰,不明确的情况下,这种查询我们统称为模糊查询
关键字:like(开启模糊查询的关键字)
关键符号:
'%':匹配任意个数的任意字符
'_':匹配单个个数的任意字符
举例说明:
1.查询id大于等于3小于等于6的数据
select * from emp where id>=3 and id<=6;
select * from emp where id between 3 and 6;
2.查询薪资是20000或者18000或者17000的数据
select * from emp where salary=20000 or salary=18000 or salary=17000;
select * from emp where salary in (20000,18000,17000);
3.查询员工姓名中包含o字母的员工姓名和薪资
select name, salary from emp where name like '%o%';
4.查询员工姓名是由四个字符组成的员工姓名与其薪资
select name,salary from emp where name like '____';
5.查询id小于3或者大于6的数据
select * from emp where not id between 3 and 6;
6.查询薪资不在20000,18000,17000范围的数据
select * from emp where not salary in (20000, 18000, 17000);
7.查询岗位描述为空的员工名与岗位名 针对null不能用等号,只能用is
select name, post from emp where post_comment is null;
分组:按照一些指定的条件将单个单个的数据分为一个个整体。
关键字:group by
(后面接列名,通常与聚合函数一起使用)
语法结构:
select 字段名 from 表名 group by 以什么字段分组;
聚合函数
1.max(列名)>>>最大值
2.min(列名)>>>最小值
3.sum(列名)>>>求总和
4.count(列名)>>>计数
5.avg(列名)>>>求平均值
小技巧:
我们写SQL是否需要使用分组 可以在题目中得到答案
每个、平均、最大、最小
举例说明:
获取每个部门的最高工资
# 以组为单位统计组内数据>>>聚合查询(聚集到一起合成为一个结果)
# 每个部门的最高工资
select post,max(salary) from emp group by post;
补充:在显示的时候还可以给字段取别名
mysql> select post as '部门名', max(salary) as '最高工资' from emp group by post;
+-----------------------------+--------------+
| 部门名 | 最高工资 |
+-----------------------------+--------------+
| operation | 20000.00 |
| sale | 4000.33 |
| teacher | 1000000.31 |
| 浦东第一帅形象代言 | 7300.33 |
+-----------------------------+--------------+
4 rows in set (0.00 sec)
# as也可以省略 但是不推荐省 因为寓意不明确
查询分组之后的部门名称和每个部门下所有的学生姓名
# group_concat(分组之后用)不仅可以用来显示除分组外字段还有拼接字符串的作用
mysql> select post, group_concat(name) from emp group by post;
+-----------------------------+------------------------------------------------+
| post | group_concat(name) |
+-----------------------------+------------------------------------------------+
| operation | 程咬铁,程咬铜,程咬银,程咬金,僧龙 |
| sale | 拉拉,乐乐,西西,呵呵,哈哈 |
| teacher | sank,jenny,jack,owen,tony,kevin,tom |
| 浦东第一帅形象代言 | jason |
+-----------------------------+------------------------------------------------+
4 rows in set (0.01 sec)
where与having的功能其实是一样的 都是用来筛选数据
只不过where用于分组之前的筛选 而having用于分组之后的筛选
为了人为的区分 所以叫where是筛选 having是过滤
举例说明:
1、统计各部门年龄在30岁以上的员工平均工资,并且保留平均工资大于10000的部门
mysql> select post, avg(salary) from emp where age > 30 group by post having avg(salary) > 10000;
+---------+---------------+
| post | avg(salary) |
+---------+---------------+
| teacher | 255450.077500 |
+---------+---------------+
1 row in set (0.00 sec)
前提
存在的数据必须是一模一样
注意:如果存在主键则无法去重
举例说明:
mysql> select distinct age from emp;
+-----+
| age |
+-----+
| 18 |
| 78 |
| 81 |
| 73 |
| 28 |
| 48 |
| 38 |
+-----+
7 rows in set (0.00 sec)
注意:order by 在默认的情况下是升序(asc),降序的设置是desc。
举例说明:
# 统计各部门年龄在10岁以上的员工平均工资,并且保留平均工资大于1000的部门,然后对平均工资进行排序
mysql> select post,avg(salary) from emp where age > 10 group by post having avg(salary) > 1000 order by avg(salary) desc;
+-----------------------------+---------------+
| post | avg(salary) |
+-----------------------------+---------------+
| teacher | 151842.901429 |
| operation | 16800.026000 |
| 浦东第一帅形象代言 | 7300.330000 |
| sale | 2600.294000 |
+-----------------------------+---------------+
4 rows in set (0.00 sec)
limit分页:限制展示条数
mysql> select * from emp limit 3; # 只有一个数字的时候为条数
+----+-------+------+-----+------------+-----------------------------+--------------+------------+--------+-----------+
| id | name | sex | age | hire_date | post | post_comment | salary | office | depart_id |
+----+-------+------+-----+------------+-----------------------------+--------------+------------+--------+-----------+
| 1 | jason | male | 18 | 2017-03-01 | 浦东第一帅形象代言 | NULL | 7300.33 | 401 | 1 |
| 2 | tom | male | 78 | 2015-03-02 | teacher | NULL | 1000000.31 | 401 | 1 |
| 3 | kevin | male | 81 | 2013-03-05 | teacher | NULL | 8300.00 | 401 | 1 |
+----+-------+------+-----+------------+-----------------------------+--------------+------------+--------+-----------+
3 rows in set (0.00 sec)
查询工资最高的人的详细信息
mysql> select * from emp order by salary desc limit 1;
+----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
| id | name | sex | age | hire_date | post | post_comment | salary | office | depart_id |
+----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
| 2 | tom | male | 78 | 2015-03-02 | teacher | NULL | 1000000.31 | 401 | 1 |
+----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
1 row in set (0.00 sec)
如果出现两个数字情况:
mysql> select * from emp limit 0,5; # 第一个参数表示起始位置,第二个参数表示的是条数,不是索引位置
+----+-------+------+-----+------------+-----------------------------+--------------+------------+--------+-----------+
| id | name | sex | age | hire_date | post | post_comment | salary | office | depart_id |
+----+-------+------+-----+------------+-----------------------------+--------------+------------+--------+-----------+
| 1 | jason | male | 18 | 2017-03-01 | 浦东第一帅形象代言 | NULL | 7300.33 | 401 | 1 |
| 2 | tom | male | 78 | 2015-03-02 | teacher | NULL | 1000000.31 | 401 | 1 |
| 3 | kevin | male | 81 | 2013-03-05 | teacher | NULL | 8300.00 | 401 | 1 |
| 4 | tony | male | 73 | 2014-07-01 | teacher | NULL | 3500.00 | 401 | 1 |
| 5 | owen | male | 28 | 2012-11-01 | teacher | NULL | 2100.00 | 401 | 1 |
+----+-------+------+-----+------------+-----------------------------+--------------+------------+--------+-----------+
5 rows in set (0.07 sec)
mysql> select * from emp limit 5,5;
+----+--------+--------+-----+------------+---------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_date | post | post_comment | salary | office | depart_id |
+----+--------+--------+-----+------------+---------+--------------+----------+--------+-----------+
| 6 | jack | female | 18 | 2011-02-11 | teacher | NULL | 9000.00 | 401 | 1 |
| 7 | jenny | male | 18 | 1900-03-01 | teacher | NULL | 30000.00 | 401 | 1 |
| 8 | sank | male | 48 | 2010-11-11 | teacher | NULL | 10000.00 | 401 | 1 |
| 9 | 哈哈 | female | 48 | 2015-03-11 | sale | NULL | 3000.13 | 402 | 2 |
| 10 | 呵呵 | female | 38 | 2010-11-01 | sale | NULL | 2000.35 | 402 | 2 |
+----+--------+--------+-----+------------+---------+--------------+----------+--------+-----------+
5 rows in set (0.00 sec)
mysql> select * from emp where name regexp '^j.*(n|y)$';
+----+-------+------+-----+------------+-----------------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_date | post | post_comment | salary | office | depart_id |
+----+-------+------+-----+------------+-----------------------------+--------------+----------+--------+-----------+
| 1 | jason | male | 18 | 2017-03-01 | 浦东第一帅形象代言 | NULL | 7300.33 | 401 | 1 |
| 7 | jenny | male | 18 | 1900-03-01 | teacher | NULL | 30000.00 | 401 | 1 |
+----+-------+------+-----+------------+-----------------------------+--------------+----------+--------+-----------+
2 rows in set (0.06 sec)
# 以j开头的所有任意字符,以n和y结尾的名字
建表:
create table dep1(
id int primary key auto_increment,
name varchar(20)
);
create table emp1(
id int primary key auto_increment,
name varchar(20),
gender enum('male','female') not null default 'male',
age int,
dep_id int
);
#插入数据
insert into dep1 values
(200,'技术'),
(201,'人力资源'),
(202,'销售'),
(203,'运营'),
(205,'安保')
;
insert into emp1(name,gender,age,dep_id) values
('jason','male',18,200),
('dragon','female',48,201),
('kevin','male',18,201),
('nick','male',28,202),
('owen','male',18,203),
('jerry','female',18,204);
本质
为了给主查询(外部查询)提供数据而首先执行的查询(内部查询)被叫作子查询。
一般根据子查询的嵌入位置分为:where型子查询,from型子查询,exists型子查询。
理解
将一张表的查询结果括号括起来当做另外一条SQL语句的条件
eg:类似以日常生活中解决问题的方式
第一步干什么
第二步基于第一步的结果在做操作 ...
何时应用?
某些情况下,当进行一个查询时,需要的条件或数据要用另外一个 select 语句的结果,这个时候,就要用到子查询。
举例说明
查询jason的部门名称
mysql> select name from dep1 where id=(select dep_id from emp1 where name='jason');
+--------+
| name |
+--------+
| 技术 |
+--------+
1 row in set (0.05 sec)
本质
从一张表中单独查询,称为单表查询
emp表和dept表联合起来查询数据,从emp表中取员工名字,从dept表中取部门名字,
这种跨表查询,多张表联合起来查询数据,被称为连接查询
理解
先将所有涉及到结果的表全部拼接到一起形成一张大表 然后从大表中查询数据
根据表的连接方式分类:
内连接(inner join)
外连接
全连接(union)
左连接+union+右连接
下面总结一下两表连接查询选择方式的依据:
1、 查两表关联列相等的数据用内连接。
2、 左表是右表的子集时用右外连接。
3、 右表是左表的子集时用左外连接。
4、 左表和右表彼此有交集但彼此互不为子集时候用全外连接(全连接)。
5、 求差操作的时候用联合查询。
注意:
当两张表进行连接查询,没有任何条件限制的时候,最终查询结果条数,是两张表条数的乘积
这种现象被称为:笛卡尔积现象(笛卡尔发现的,这是一个数学现象)
怎么避免笛卡尔积现象:
连接时加条件,满足这个条件的记录才会被筛选出来
mysql> select * from emp1,dep1 where dep1.id = emp1.dep_id;
+----+--------+--------+------+--------+-----+--------------+
| id | name | gender | age | dep_id | id | name |
+----+--------+--------+------+--------+-----+--------------+
| 1 | jason | male | 18 | 200 | 200 | 技术 |
| 2 | dragon | female | 48 | 201 | 201 | 人力资源 |
| 3 | kevin | male | 18 | 201 | 201 | 人力资源 |
| 4 | nick | male | 28 | 202 | 202 | 销售 |
| 5 | owen | male | 18 | 203 | 203 | 运营 |
+----+--------+--------+------+--------+-----+--------------+
5 rows in set (0.05 sec)
但是我们可以发现,两张表结合在一起之后,都少东西了,因为有数据没有关联起来。
左连接:
mysql> select * from emp1 left join dep1 on dep1.id = emp1.dep_id;
+----+--------+--------+------+--------+------+--------------+
| id | name | gender | age | dep_id | id | name |
+----+--------+--------+------+--------+------+--------------+
| 1 | jason | male | 18 | 200 | 200 | 技术 |
| 2 | dragon | female | 48 | 201 | 201 | 人力资源 |
| 3 | kevin | male | 18 | 201 | 201 | 人力资源 |
| 4 | nick | male | 28 | 202 | 202 | 销售 |
| 5 | owen | male | 18 | 203 | 203 | 运营 |
| 6 | jerry | female | 18 | 204 | NULL | NULL |
+----+--------+--------+------+--------+------+--------------+
6 rows in set (0.05 sec)
右连接:
mysql> select * from dep1 right join emp1 on dep1.id = emp1.dep_id;
+------+--------------+----+--------+--------+------+--------+
| id | name | id | name | gender | age | dep_id |
+------+--------------+----+--------+--------+------+--------+
| 200 | 技术 | 1 | jason | male | 18 | 200 |
| 201 | 人力资源 | 2 | dragon | female | 48 | 201 |
| 201 | 人力资源 | 3 | kevin | male | 18 | 201 |
| 202 | 销售 | 4 | nick | male | 28 | 202 |
| 203 | 运营 | 5 | owen | male | 18 | 203 |
| NULL | NULL | 6 | jerry | female | 18 | 204 |
+------+--------------+----+--------+--------+------+--------+
6 rows in set (0.00 sec)
1.⾸先根据要做的需求,先分析⼀下,需要⽤到哪些查询,例如要⽤到关联查询,就先把用到的表列举出来。
2.前⾯的内容可以先放着不⽤谢,然后找三张表的之间的关联关系,这⾥要看的连接⽅式是⾃然连接,还是左连接,右连接等。
3.关联关系写好了,然后再写查询的内容。
注意:
1.应尽量避免在+where+⼦句中使⽤+!=+或+<>+操作符,否则将引擎放弃使⽤索引⽽进⾏全表扫描。
2.应尽量避免在+where+⼦句中使⽤+or+来连接条件,如果⼀个字段有索引,⼀个字段没有索引,将导致引擎放弃使⽤索引⽽进⾏全表扫描。
mysql> select post,group_concat(name) from emp group by post;
+-----------------------------+------------------------------------------------+
| post | group_concat(name) |
+-----------------------------+------------------------------------------------+
| operation | 程咬铁,程咬铜,程咬银,程咬金,僧龙 |
| sale | 拉拉,乐乐,西西,呵呵,哈哈 |
| teacher | sank,jenny,jack,owen,tony,kevin,tom |
| 浦东第一帅形象代言 | jason |
+-----------------------------+------------------------------------------------+
4 rows in set (0.01 sec)
mysql> select post, count(id) from emp group by post;
+-----------------------------+-----------+
| post | count(id) |
+-----------------------------+-----------+
| operation | 5 |
| sale | 5 |
| teacher | 7 |
| 浦东第一帅形象代言 | 1 |
+-----------------------------+-----------+
4 rows in set (0.01 sec)
mysql> select sex,count(id) from emp group by sex;
+--------+-----------+
| sex | count(id) |
+--------+-----------+
| male | 10 |
| female | 8 |
+--------+-----------+
2 rows in set (0.00 sec)
mysql> select post, avg(salary) from emp group by post;
+-----------------------------+---------------+
| post | avg(salary) |
+-----------------------------+---------------+
| operation | 16800.026000 |
| sale | 2600.294000 |
| teacher | 151842.901429 |
| 浦东第一帅形象代言 | 7300.330000 |
+-----------------------------+---------------+
4 rows in set (0.00 sec)
mysql> select post, max(salary) from emp group by post;
+-----------------------------+-------------+
| post | max(salary) |
+-----------------------------+-------------+
| operation | 20000.00 |
| sale | 4000.33 |
| teacher | 1000000.31 |
| 浦东第一帅形象代言 | 7300.33 |
+-----------------------------+-------------+
4 rows in set (0.01 sec)
mysql> select post as '岗位名', min(salary) as '最低薪资' from emp group by post;
+-----------------------------+--------------+
| 岗位名 | 最低薪资 |
+-----------------------------+--------------+
| operation | 10000.13 |
| sale | 1000.37 |
| teacher | 2100.00 |
| 浦东第一帅形象代言 | 7300.33 |
+-----------------------------+--------------+
4 rows in set (0.00 sec)
mysql> select sex as '性别', avg(salary) as '平均薪资' from emp group by sex;
+--------+---------------+
| 性别 | 平均薪资 |
+--------+---------------+
| male | 110920.077000 |
| female | 7250.183750 |
+--------+---------------+
2 rows in set (0.00 sec)
mysql> select post, avg(salary) from emp where age > 30 group by post;
+---------+---------------+
| post | avg(salary) |
+---------+---------------+
| sale | 2500.240000 |
| teacher | 255450.077500 |
+---------+---------------+
2 rows in set (0.01 sec)
mysql> select post, avg(salary) from emp where age > 10 group by post having avg(salary) > 1000 order by avg(salary);
+-----------------------------+---------------+
| post | avg(salary) |
+-----------------------------+---------------+
| sale | 2600.294000 |
| 浦东第一帅形象代言 | 7300.330000 |
| operation | 16800.026000 |
| teacher | 151842.901429 |
+-----------------------------+---------------+
4 rows in set (0.00 sec)