目录
补充:os.environ['TF_CPP_MIN_LOG_LEVEL']
(以图片中的二分类问题为例)



代码:
- import tensorflow as tf
-
- from tensorflow.keras import datasets, layers, optimizers
-
- (xs,ys),_ = datasets.mnist.load_data() # 自动下载mnist数据集
- print('datasets:',xs.shape,ys.shape)
-
- xs = tf.convert_to_tensor(xs,dtype=tf.float32)/255. # 将mnist中的数据转为tensorflow格式
- db = tf.data.Dataset.from_tensor_slices((xs,ys)) #将下载的数据存入datasets数据集
-
- for step,(x,y) in enumerate(db): #单个数据输出
- print(step,x.shape,y,y.shape)
代码切割分析:


利用Sequential模块。
- #准备网络结构与优化器
- model = keras.Sequential([
- #3层结构
- layers.Dense(512, activation='relu'),
- layers.Dense(256, activation='relu'),
- layers.Dense(10)])
-
- optimizer = optimizers.SGD(learning_rate=0.001)

- with tf.GradientTape() as tape:
- # [b, 28, 28] => [b, 784]
- x = tf.reshape(x, (-1, 28*28))
- # Step1. compute output
- # [b, 784] => [b, 10]
- out = model(x)
- # Step2. compute loss
- loss = tf.reduce_sum(tf.square(out - y)) / x.shape[0]

- # Step3. optimize and update w1, w2, w3, b1, b2, b3
- grads = tape.gradient(loss, model.trainable_variables)
- # w' = w - lr * grad
- optimizer.apply_gradients(zip(grads, model.trainable_variables))

- import os
- import tensorflow as tf
- from tensorflow import keras
- from tensorflow.keras import layers, optimizers, datasets
-
-
- os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
-
- #数据集的加载
- (x, y), (x_val, y_val) = datasets.mnist.load_data()
- x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
- y = tf.convert_to_tensor(y, dtype=tf.int32)
- y = tf.one_hot(y, depth=10)
- print(x.shape, y.shape)
- train_dataset = tf.data.Dataset.from_tensor_slices((x, y))
- train_dataset = train_dataset.batch(200) #一次加载200张图片
-
- #准备网络结构与优化器
- model = keras.Sequential([
- #3层结构
- layers.Dense(512, activation='relu'),
- layers.Dense(256, activation='relu'),
- layers.Dense(10)])
-
- optimizer = optimizers.SGD(learning_rate=0.001)
-
- #计算迭代
- def train_epoch(epoch):
-
- # Step4.loop
- for step, (x, y) in enumerate(train_dataset):
-
-
- with tf.GradientTape() as tape:
- # [b, 28, 28] => [b, 784]
- x = tf.reshape(x, (-1, 28*28))
- # Step1. compute output
- # [b, 784] => [b, 10]
- out = model(x)
- # Step2. compute loss
- loss = tf.reduce_sum(tf.square(out - y)) / x.shape[0]
-
- # Step3. optimize and update w1, w2, w3, b1, b2, b3
- grads = tape.gradient(loss, model.trainable_variables)
- # w' = w - lr * grad
- optimizer.apply_gradients(zip(grads, model.trainable_variables))
-
- if step % 100 == 0:
- print(epoch, step, 'loss:', loss.numpy())
-
- def train():
- #计算迭代30次
- for epoch in range(30):
- train_epoch(epoch)
-
- if __name__ == '__main__':
- train()
训练结果:
os.environ["TF_CPP_MIN_LOG_LEVEL"]的取值有四个:0,1,2,3,分别和log的四个等级挂钩:INFO,WARNING,ERROR,FATAL(重要性由左到右递增)
当os.environ["TF_CPP_MIN_LOG_LEVEL"]=0的时候,输出信息:INFO + WARNING + ERROR + FATAL
当os.environ["TF_CPP_MIN_LOG_LEVEL"]=1的时候,输出信息:WARNING + ERROR + FATAL
当os.environ["TF_CPP_MIN_LOG_LEVEL"]=2的时候,输出信息:ERROR + FATAL
当os.environ["TF_CPP_MIN_LOG_LEVEL"]=3的时候,输出信息:FATAL