冲激函数 δ ( t ) \delta(t) δ(t)的导数: ∫ − ∞ + ∞ δ ( n ) ( t ) φ ( t ) d t = ( − 1 ) n φ ( n ) ( 0 ) \int_{-\infty}^{+\infty}\delta^{(n)}(t)\varphi(t)dt = (-1)^n\varphi^{(n)}(0) ∫−∞+∞δ(n)(t)φ(t)dt=(−1)nφ(n)(0)
因此,性质:
筛选: f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t)\delta'(t)=f(0)\delta'(t)-f'(0)\delta(t) f(t)δ′(t)=f(0)δ′(t)−f′(0)δ(t); f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f(t)\delta(t)=f(0)\delta(t) f(t)δ(t)=f(0)δ(t)
移位: f ( t ) δ ′ ( t − t 0 ) = f ( t 0 ) δ ′ ( t − t 0 ) − f ′ ( t 0 ) δ ( t − t 0 ) f(t)\delta'(t-t_0)=f(t_0)\delta'(t-t_0)-f'(t_0)\delta(t-t_0) f(t)δ′(t−t0)=f(t0)δ′(t−t0)−f′(t0)δ(t−t0); f ( t ) δ ( t − t 0 ) = f ( t 0 ) δ ( t − t 0 ) f(t)\delta(t-t_0)=f(t_0)\delta(t-t_0) f(t)δ(t−t0)=f(t0)δ(t−t0)
尺度变换: δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\frac{1}{|a|}\delta(t) δ(at)=∣a∣1δ(t); δ ( n ) ( a t ) = 1 ∣ a ∣ ⋅ 1 a n δ ( t ) \delta^{(n)}(at)=\frac{1}{|a|}\cdot \frac{1}{a^n}\delta(t) δ(n)(at)=∣a∣1⋅an1δ(t)
奇偶性:n为偶数的时候(包括0), δ ( n ) ( t ) \delta^{(n)}(t) δ(n)(t)为偶函数;n为奇数的时候, δ ( n ) ( t ) \delta^{(n)}(t) δ(n)(t)为奇函数
复合函数形式的冲激函数:若f(t)=0,有n个单根: δ [ f ( t ) ] = ∑ i = 1 n 1 ∣ f ′ ( t i ) ∣ δ ( t − t i ) \delta[f(t)] = \sum_{i=1}^{n} \frac{1}{|f'(t_i)|} \delta(t-t_i) δ[f(t)]=∑i=1n∣f′(ti)∣1δ(t−ti);若f(t)=0有重根,则 δ ( t ) \delta(t) δ(t)没有意义。