This time, you are supposed to find A × B A×B A×B where A A A and B B B are two polynomials.
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K N 1 a N 1 N 2 a N 2 . . . N K a N K K N_1 a_{N_1} N_2 a_{N_2} ... N_K a_{N_K} KN1aN1N2aN2...NKaNK
where
K
K
K is the number of nonzero terms in the polynomial,
N
i
N_i
Ni and
a
N
i
a_{N_i}
aNi (
i
=
1
,
2
,
⋯
,
K
i=1,2,⋯,K
i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that
1
≤
K
≤
10
1≤K≤10
1≤K≤10,
0
≤
N
K
<
⋯
<
N
2
<
N
1
≤
1000
0≤NK<⋯
For each test case you should output the product of A A A and B B B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.
2 1 2.4 0 3.2
2 2 1.5 1 0.5
3 3 3.6 2 6.0 1 1.6
多项式相乘,求项数和系数
多项式相乘,可能因为学过计组,感觉也就这么回事,特别是之前有一道 1002 A+B for Polynomials ,导致基本看不出啥难点。
#include
#include
#include
#include
using namespace std;
int K;
map<int,double,greater<int> >ma1,ma2,ma;
int a;
double b;
int main() {
ma.clear();
ma1.clear();
ma2.clear();
cin>>K;
for(int i=0; i<K; i++) {
cin>>a>>b;
if(ma1.count(a)==0&&b!=0) {
ma1[a]=b;
} else {
ma1[a]+=b;
}
}
cin>>K;
for(int i=0; i<K; i++) {
cin>>a>>b;
if(ma2.count(a)==0&&b!=0) {
ma2[a]=b;
} else {
ma2[a]+=b;
}
}
for(map<int,double>::iterator it1=ma1.begin(); (it1)!=ma1.end(); it1++) {
for(map<int,double>::iterator it2=ma2.begin(); (it2)!=ma2.end(); it2++) {
a=it1->first+it2->first;
b=it1->second*it2->second;
if(ma.count(a)==0&&b!=0) {
ma[a]=b;
} else {
ma[a]+=b;
}
}
}
for(map<int,double>::iterator it=ma.begin(); (it)!=ma.end();) {
if(it->second==0) {
ma.erase(it++);
} else {
++it;
}
}
if(ma.empty()) {
cout<<0<<endl;
} else {
cout<<ma.size();
for(map<int,double>::iterator it=ma.begin(); (it)!=ma.end(); it++) {
cout<<" "<<it->first<<" "<<setiosflags(ios::fixed)<<setprecision(1)<<it->second;
}
cout<<endl;
}
return 0;
}