Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, a binary tree can be uniquely determined.
Now given a sequence of statements about the structure of the resulting tree, you are supposed to tell if they are correct or not. A statment is one of the following:
Note:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are no more than 103 and are separated by a space.
Then another positive integer M (≤30) is given, followed by M lines of statements. It is guaranteed that both A and B in the statements are in the tree.
For each statement, print in a line Yes if it is correct, or No if not.
- 9
- 16 7 11 32 28 2 23 8 15
- 16 23 7 32 11 2 28 15 8
- 7
- 15 is the root
- 8 and 2 are siblings
- 32 is the parent of 11
- 23 is the left child of 16
- 28 is the right child of 2
- 7 and 11 are on the same level
- It is a full tree
- Yes
- No
- Yes
- No
- Yes
- Yes
- Yes
解题思路:首先建树(中序 , 后序)同时计算出每个节点的深度depth,并且存一下每个节点的value值和其节点的一一映射关系(题目保证不会重复,这样不需要每一次判断都要重新遍历整颗树)。
下面都必须建立在这个节点存在的前提下
第一点,求root:建树结束后返回的值就是root
第二点,求siblings:层序遍历,是兄弟就是同根生,一个根的两个子树就是兄弟
第三点,求parent,left child,right child:直接调用映射关系判断就行
第四点,求level:调用每个节点的深度,进行判断就行
第五点,求full tree:只要建树的时候没有只有右子树,没有左子树的情况出现,就是full tree
最后一点:字符串处理,找到关键词就行,在一个字符串中出现上述的五点中的任意一点,用一对映射关系去存其type值就行,每一个串中的数字还需要截取出来,存入vector中,每一次有可能不同,所以需要clear
- /*
- 建树
- 第一点 找到根
- 第二点 每个点的深度
- */
- #include
- #include
- #include
- #include
- #include
- #include
-
- using namespace std;
- const int N = 100;
-
- struct Node
- {
- int val;
- Node *right = NULL;
- Node *left = NULL;
- };
-
- bool flag = true;
- int n;
- int post[N] , in[N];
- unordered_map<int , int>mp;
- unordered_map
int>pan_sit; - unordered_map<int , Node*>nod;
- int depth[1010] , bro[1010];
- /*
- A is the root 1
- A and B are siblings 2
- A is the parent of B 3
- A is the left child of B 4
- A is the right child of B 5
- A and B are on the same level 6
- It is a full tree 7
- */
- void init()
- {
- pan_sit["root"] = 1;
- pan_sit["siblings"] = 2;
- pan_sit["parent"] = 3;
- pan_sit["left"] = 4;
- pan_sit["right"] = 5;
- pan_sit["level"] = 6;
- pan_sit["full"] = 7;
- }
-
- Node* build(int il , int ir , int pl , int pr , int de)
- {
- Node* root = new Node;
- int k = mp[post[pr]];
- root -> val = in[k];
- depth[root -> val] = de;
- nod[root -> val] = root;
- if(il < k) root -> left = build(il , k - 1 , pl , pl + k - 1 - il , de + 1);
- if(ir > k) root -> right = build(k + 1 , ir , pr - ir + k , pr - 1 , de + 1);
- if(!root -> left && root -> right) flag = false;
- return root;
- }
-
- int k;
- vector<int>v;
- int pan(string s)
- {
- int idx = 0;
- for(int i = 0;i < s.length();i ++)
- {
- int j = i;
- while(j < s.length() && s[j] != ' ') j ++;
- string res = s.substr(i , j - i);
- //cout << res << " ";
- if(res[0] <= '9' && res[0] >= '0') v.push_back(stoi(res));
- if(pan_sit[res]) idx = pan_sit[res];
- i = j;
- }
- return idx;
- }
-
- bool bfs(Node *r)
- {
- queue
q; - q.push(r);
- while(!q.empty())
- {
- Node *t = q.front();
- q.pop();
-
- int cnt = 0;
- if(t -> left)
- {
- cnt ++;
- q.push(t -> left);
- }
- if(t -> right)
- {
- cnt ++;
- q.push(t -> right);
- }
- if(t -> right && t -> left)
- {
- bro[t -> right -> val] = t -> left -> val;
- bro[t -> left -> val] = t -> right -> val;
- }
- }
- }
-
- void judge(int type , Node *r)
- {
- if(type == 1)
- {
- if(v[0] == r -> val) puts("Yes");
- else puts("No");
- }
- else if(type == 2)
- {
- if(bro[v[0]] == v[1]) puts("Yes");
- else puts("No");
- }
- else if(type == 3)
- {
- if( (!nod[v[0]] -> left) || (!nod[v[0]] -> right))
- {
- puts("No");
- return;
- }
- if(nod[v[0]] -> left -> val == v[1]) puts("Yes");
- else if(nod[v[0]] -> right -> val == v[1]) puts("Yes");
- else puts("No");
- }
- else if(type == 4)
- {
- if(!nod[v[1]] -> left)
- {
- puts("No");
- return;
- }
- if(nod[v[1]] -> left -> val == v[0]) puts("Yes");
- else puts("No");
- }
- else if(type == 5)
- {
- if(!nod[v[1]] -> right)
- {
- puts("No");
- return;
- }
- if(nod[v[1]] -> right -> val == v[0]) puts("Yes");
- else puts("No");
- }
- else if(type == 6)
- {
- if(depth[v[0]] == depth[v[1]]) puts("Yes");
- else puts("No");
- }
- else
- {
- if(flag) puts("Yes");
- else puts("No");
- }
- }
-
-
- int main()
- {
- init();
- cin >> n;
- for(int i = 0;i < n;i ++) cin >> post[i];
-
- for(int i = 0;i < n;i ++)
- {
- cin >> in[i];
- mp[in[i]] = i;
- }
-
- Node* root = build(0 , n - 1 , 0 , n - 1 , 0);
- bfs(root);
- cin >> k;
- getchar();
- while(k --)
- {
- string s;
- getline(cin , s);
- int type = pan(s);
- judge(type , root);
- v.clear();
- }
- return 0;
- }