• 小波神经网络的基本原理,小波神经网络算法原理


    小波神经网络的优势是什么?谢谢

    小波神经网络相比于前向的神经网络,它有明显的优点:首先小波神经网络的基元和整个结构是依据小波分析理论确定的,可以避免BP神经网络等结构设计上的盲目性;其次小波神经网络有更强的学习能力,精度更高。

    总的而言,对同样的学习任务,小波神经网络结构更简单,收敛速度更快,精度更高。

    谷歌人工智能写作项目:小发猫

    神经网络以及小波分析法在汽车发动机故障检修中有什么应用?

    汽车是我们生活中常用的将交通工具,那么神经网络和小波分析法在汽车发动机故障检修中有什么应用呢?大家请看我接下来详细地讲解A8U神经网络。一,小波分析在故障检修中的应用小波包分解与故障特征提取。

    缸盖表面的振动信号由一系列瞬态响应信号组成,分别代表气缸的振动源响应信号:1为气缸的燃烧激励响应;2是排气阀打开时的节流阀冲击。

    气门间隙异常时,振动信号的能量大于目前冲击力作用时,振动信号的主要组件目前离冲击力稳定的振动信号和噪声,信号能量相对较小。

    因此,可以利用每个频带的能量变化来提取故障特征,通过小波包分解系数{4]得到频带的能量。二,神经网络在故障检修中的作用神经网络与故障识别的基本原理。

    人工神经网络以其大规模并行处理、分布式存储、自组织、自适应和自学习的能力,以及适合于处理不准确或模糊的信息而备受关注5]。其中,最成熟的是BP神经网络。值,直到输出接近理想输出信号6。

    因此,BP神经网络可以以任意精度逼近任意有限维函数,适用于模式识别。现在对每个工况信号取5个样本,按照⒉部分所述步骤对35组样本信号进行编程,提取样本信号的能量特征向量。

    三,小波分析法和神经网络应用总结为了实现柴油机气门机构的非解体故障诊断,本文将对测量的气缸盖振动信号进行小波阈值降噪预处理。然后根据信号的频率特性,对信号进行时频分析后进行小波包分解。

    所构造的能量特征向量准确地反映了气门间隙状态下缸盖振动信号能量的变化。

    实验表明,利用能量特征向量,BP神经网络能更准确地完成从振动信号空间到气门间隙状态空间的非线性映射,能更好地满足柴油机状态检测和故障诊断的要求。

    小波神经网络比一般神经网络的优势是什么?

    matlab神经网络目前有什么具体的实际应用

    MATLAB中文论坛2010年出过一本书,北航出版社的,叫《MATLAB神经网络30个案例分析(豆瓣)》。我觉得把它作为入门书挺好的,每一章配有视频和代码,可以依样画葫芦。

    刚刚顺手还看到了另一本书《MATLAB智能算法30个案例分析》,看目录貌似内容也比较接近的。

    《神经网络》包含的30个例子:P神经网络的数据分类——语音特征信号分类BP神经网络的非线性系统建模——非线性函数拟合遗传算法优化BP神经网络——非线性函数拟合神经网络遗传算法函数极值寻优——非线性函数极值寻优基于BP_Adaboost的强分类器设计——公司财务预警建模PID神经元网络解耦控制算法——多变量系统控制RBF网络的回归——非线性函数回归的实现GRNN的数据预测——基于广义回归神经网络的货运量预测离散Hopfield神经网络的联想记忆——数字识别离散Hopfield神经网络的分类——高校科研能力评价连续Hopfield神经网络的优化——旅行商问题优化计算SVM的数据分类预测——意大利葡萄酒种类识别SVM的参数优化——如何更好的提升分类器的性能SVM的回归预测分析——上证指数开盘指数预测SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测自组织竞争网络在模式分类中的应用——患者癌症发病预测SOM神经网络的数据分类——柴油机故障诊断Elman神经网络的数据预测——电力负荷预测模型研究概率神经网络的分类预测——基于PNN的变压器故障诊断神经网络变量筛选——基于BP的神经网络变量筛选LVQ神经网络的分类——乳腺肿瘤诊断LVQ神经网络的预测——人脸朝向识别小波神经网络的时间序列预测——短时交通流量预测模糊神经网络的预测算法——嘉陵江水质评价广义神经网络的聚类算法——网络入侵聚类粒子群优化算法的寻优算法——非线性函数极值寻优遗传算法优化计算——建模自变量降维基于灰色神经网络的预测算法研究——订单需求预测基于Kohonen网络的聚类算法——网络入侵聚类神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类。

    神经网络优缺点,

    优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。

    预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。

    寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

    缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

    (3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。

    扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

    人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

    近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

    将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

    神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

    其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

    由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

    目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。

    小波分析与神经网络的结合就是小波网络吗

    将小波分析与神经网络的结合是小波神经网络,有两种结合方式,即辅助式结合和嵌套式结合。辅助式结合是将小波分析作为神经网络的前置预处理手段,为神经网络提供输入特征向量,然后再用传统的神经网络进行处理。

    嵌套式结合使用小波函数代替神经网络的隐层函数。

    人工神经网络的发展趋势

    人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

    人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

    近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

    将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

    神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

    其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

    由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

    目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。下面主要就神经网络与小波分析、混沌、粗集理论、分形理论的融合进行分析。

    与小波分析的结合1981年,法国地质学家Morlet在寻求地质数据时,通过对Fourier变换与加窗Fourier变换的异同、特点及函数构造进行创造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。

    1986年以来由于YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速发展成为一门新兴学科。

    Meyer所著的小波与算子,Daubechies所著的小波十讲是小波研究领域最权威的著作。小波变换是对Fourier分析方法的突破。

    它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

    小波分析相当于一个数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。因此,小波分析已成为地球物理、信号处理、图像处理、理论物理等诸多领域的强有力工具。

    小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。

    在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。

    小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。

    小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。

    另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。混沌神经网络混沌第一个定义是上世纪70年代才被Li-Yorke第一次提出的。

    由于它具有广泛的应用价值,自它出现以来就受到各方面的普遍关注。

    混沌是一种确定的系统中出现的无规则的运动,混沌是存在于非线性系统中的一种较为普遍的现象,混沌运动具有遍历性、随机性等特点,能在一定的范围内按其自身规律不重复地遍历所有状态。

    混沌理论所决定的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。

    1990年Kaihara、T.Takabe和M.Toyoda等人根据生物神经元的混沌特性首次提出混沌神经网络模型,将混沌学引入神经网络中,使得人工神经网络具有混沌行为,更加接近实际的人脑神经网络,因而混沌神经网络被认为是可实现其真实世界计算的智能信息处理系统之一,成为神经网络的主要研究方向之一。

    与常规的离散型Hopfield神经网络相比较,混沌神经网络具有更丰富的非线性动力学特性,主要表现如下:在神经网络中引入混沌动力学行为;混沌神经网络的同步特性;混沌神经网络的吸引子。

    当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。

    混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程)一一联想到记忆模式,特别对于那些状态空间分布的较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善Hopfield神经网络的记忆能力。

    混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。这将对复杂的模式识别、图像处理等工程应用发挥重要作用。

    混沌神经网络受到关注的另一个原因是混沌存在于生物体真实神经元及神经网络中,并且起到一定的作用,动物学的电生理实验已证实了这一点。

    混沌神经网络由于其复杂的动力学特性,在动态联想记忆、系统优化、信息处理、人工智能等领域受到人们极大的关注。

    针对混沌神经网络具有联想记忆功能,但其搜索过程不稳定,提出了一种控制方法可以对混沌神经网络中的混沌现象进行控制。研究了混沌神经网络在组合优化问题中的应用。

    为了更好的应用混沌神经网络的动力学特性,并对其存在的混沌现象进行有效的控制,仍需要对混沌神经网络的结构进行进一步的改进和调整,以及混沌神经网络算法的进一步研究。

    基于粗集理论粗糙集(RoughSets)理论是1982年由波兰华沙理工大学教授Z.Pawlak首先提出,它是一个分析数据的数学理论,研究不完整数据、不精确知识的表达、学习、归纳等方法。

    粗糙集理论是一种新的处理模糊和不确定性知识的数学工具,其主要思想就是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。

    目前,粗糙集理论已被成功应用于机器学习、决策分析、过程控制、模式识别与数据挖掘等领域。

    粗集和神经网络的共同点是都能在自然环境下很好的工作,但是,粗集理论方法模拟人类的抽象逻辑思维,而神经网络方法模拟形象直觉思维,因而二者又具有不同特点。

    粗集理论方法以各种更接近人们对事物的描述方式的定性、定量或者混合性信息为输入,输入空间与输出空间的映射关系是通过简单的决策表简化得到的,它考虑知识表达中不同属性的重要性确定哪些知识是冗余的,哪些知识是有用的,神经网络则是利用非线性映射的思想和并行处理的方法,用神经网络本身结构表达输入与输出关联知识的隐函数编码。

    在粗集理论方法和神经网络方法处理信息中,两者存在很大的两个区别:其一是神经网络处理信息一般不能将输入信息空间维数简化,当输入信息空间维数较大时,网络不仅结构复杂,而且训练时间也很长;而粗集方法却能通过发现数据间的关系,不仅可以去掉冗余输入信息,而且可以简化输入信息的表达空间维数。

    其二是粗集方法在实际问题的处理中对噪声较敏感,因而用无噪声的训练样本学习推理的结果在有噪声的环境中应用效果不佳。而神经网络方法有较好的抑制噪声干扰的能力。

    因此将两者结合起来,用粗集方法先对信息进行预处理,即把粗集网络作为前置系统,再根据粗集方法预处理后的信息结构,构成神经网络信息处理系统。

    通过二者的结合,不但可减少信息表达的属性数量,减小神经网络构成系统的复杂性,而且具有较强的容错及抗干扰能力,为处理不确定、不完整信息提供了一条强有力的途径。

    目前粗集与神经网络的结合已应用于语音识别、专家系统、数据挖掘、故障诊断等领域,将神经网络和粗集用于声源位置的自动识别,将神经网络和粗集用于专家系统的知识获取中,取得比传统专家系统更好的效果,其中粗集进行不确定和不精确数据的处理,神经网络进行分类工作。

    虽然粗集与神经网络的结合已应用于许多领域的研究,为使这一方法发挥更大的作用还需考虑如下问题:模拟人类抽象逻辑思维的粗集理论方法和模拟形象直觉思维的神经网络方法更加有效的结合;二者集成的软件和硬件平台的开发,提高其实用性。

    与分形理论的结合自从美国哈佛大学数学系教授BenoitB.Mandelbrot于20世纪70年代中期引入分形这一概念,分形几何学(Fractalgeometry)已经发展成为科学的方法论--分形理论,且被誉为开创了20世纪数学重要阶段。

    现已被广泛应用于自然科学和社会科学的几乎所有领域,成为现今国际上许多学科的前沿研究课题之一。由于在许多学科中的迅速发展,分形已成为一门描述自然界中许多不规则事物的规律性的学科。

    它已被广泛应用在生物学、地球地理学、天文学、计算机图形学等各个领域。

    用分形理论来解释自然界中那些不规则、不稳定和具有高度复杂结构的现象,可以收到显著的效果,而将神经网络与分形理论相结合,充分利用神经网络非线性映射、计算能力、自适应等优点,可以取得更好的效果。

    分形神经网络的应用领域有图像识别、图像编码、图像压缩,以及机械设备系统的故障诊断等。

    分形图像压缩/解压缩方法有着高压缩率和低遗失率的优点,但运算能力不强,由于神经网络具有并行运算的特点,将神经网络用于分形图像压缩/解压缩中,提高了原有方法的运算能力。

    将神经网络与分形相结合用于果实形状的识别,首先利用分形得到几种水果轮廓数据的不规则性,然后利用3层神经网络对这些数据进行辨识,继而对其不规则性进行评价。

    分形神经网络已取得了许多应用,但仍有些问题值得进一步研究:分形维数的物理意义;分形的计算机仿真和实际应用研究。随着研究的不断深入,分形神经网络必将得到不断的完善,并取得更好的应用效果。?。

    混沌时间序列的小波神经网络预测方法及其优化研究怎么样

    将历史数据作为样本训练,最后用一组对应的样本作为输入,输出自然是未来数据。神经网络预测就是这么做的。对商品价格变动的分析,可归结为对影响市场供求关系的诸多因素的综合分析。

    传统的统计经济学方法因其固有的局限性,难以对价格变动做出。

  • 相关阅读:
    Profinet转modbusTCP网关快速配置案例
    【JavaEE】_ajax构造HTTP请求
    《OnJava》——11内部类
    2022 11月24 Ridge/LASSO Regression学习笔记
    Java 中如何比较两个BigDecimal 以及BigDecimal的坑
    [极客大挑战 2019]FinalSQL - 异或盲注
    在线转换工具
    杭州公积金修改手机号信息
    【broadcast-service】一个轻量级Python发布订阅者框架
    第三章:最新版零基础学习 PYTHON 教程(第九节 - Python 运算符—Python 中的除法运算符)
  • 原文地址:https://blog.csdn.net/aifans_bert/article/details/126316460