• Dijkstra算法不能解决负权边的问题


    之前我们说了Dijkstra算法不能解决带有负权边的图,这是为什么呢?下面用一个例子讲解一下

    以这里图为例,一共有五个点,也就说要循环5次,确定每个点的最短距离

    用dijkstra算法解决的的详细步骤

    1,初始dist[1] = 0,1号点距离起点1的距离为0

    2,找到了未标识且离起点1最近的结点1,标记1号点,用1号点更新和它相连点的距离,2号点被更新成dist[2] = 2,3号点被更新成dist[3] = 5

    3,找到了未标识且离起点1最近的结点2,标识2号点,用2号点更新和它相连点的距离,4号点被更新成dist[4] = 4

    4,找到了未标识且离起点1最近的结点4,标识4号点,用4号点更新和它相连点的距离,5号点被更新成dist[5] = 5

    5,找到了未标识且离起点1最近的结点3,标识3号点,用3号点更新和它相连点的距离,4号点被更新成dist[4] = 3

    结束

    得到1号点到5号点的最短距离是5,对应的路径是1 -> 2 -> 4 -> 5,并不是真正的最短距离

    结果:

    dijkstra算法在图中走出来的最短路径是1 -> 2 -> 4 -> 5,算出 1 号点到
    5 号点的最短距离是2 + 2 + 1 = 5,然而还存在一条路径是1 -> 3 -> 4 -> 5,该路径的长度是5 + (-2) + 1 = 4
    因此 dijkstra 算法失效

    注:我们可以发现如果有负权边的话4号点经过标记后还可以继续更新
    但此时4号点已经被标记过了,所以4号点不能被更新了,只能一条路走到黑
    当用负权边更新4号点后5号点距离起点的距离我们可以发现可以进一步缩小成4。  
    所以总结下来就是:dijkstra不能解决负权边是因为 dijkstra要求每个点被确定后,dist[j]就是最短距离了,之后就不能再被更新了(一锤子买卖),而如果有负权边的话,那已经确定的点的dist[j]不一定是最短了,可能还可以通过负权边进行更新。

    看了上面那个例子应该就可以理解为什么Dijkstra不能解决带有负权边的问题了。如有错漏之处,敬请指正!

  • 相关阅读:
    J2EE从入门到入土07.XML建模
    Java程序员所需Javascript知识
    嵌入式分享合集52
    基于flink与groovy实现全实时动态规则智能营销与风控系统
    lammps输出模拟结果的4种方法
    Ubuntu22.04.4 - vim - 笔记
    IP地址查询和代理服务器:双重保护隐私
    linux 多台机器修改时间同步
    NLP学习:深入NLP
    matplotlib ax bar color 设置ax bar的颜色、 透明度、label legend
  • 原文地址:https://blog.csdn.net/qq_52905520/article/details/126322459