尝试在李沐大神的一层线性模型上进行模型改进和对比实验,结果笑死我了,只能说太上老君本人了。
先上代码,后上乐子,哦不,结果。
实验代码:
第一部分,数据集下载部分:
import hashlib
import os
import tarfile
import zipfile
import requests
#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
def download(name, cache_dir=os.path.join('..', 'data')): #@save
"""下载一个DATA_HUB中的文件,返回本地文件名"""
assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split('/')[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname # 命中缓存
print(f'正在从{url}下载{fname}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname
def download_extract(name, folder=None): #@save
"""下载并解压zip/tar文件"""
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False, '只有zip/tar文件可以被解压缩'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def download_all(): #@save
"""下载DATA_HUB中的所有文件"""
for name in DATA_HUB:
download(name)
第二部分,正菜:
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
# 设置数据集参数
DATA_HUB['kaggle_house_train'] = (#@save
DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = ( #@save
DATA_URL + 'kaggle_house_pred_test.csv',
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
# 下载数据集
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4,[0, 1, 2, 3, -3, -2, -1]])
# 去掉无价值的ID列,以及train_set中的lable列
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
#找到特征中数字部分,将数据标准化
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std()))
#标准化后,均值消失,可以将数据中NAN值设置为其平均数0
all_features[numeric_features] = all_features[numeric_features].fillna(0)
#用get_dummies函数将所有NA值视为有效特征值,且为其创建指示符特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
#设置分割点n_train以区分训练/验证数据集,将房价设置为label
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[ :n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train: ].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1),
dtype=torch.float32)
print(train_features.shape[1])
#根据公式确定神经元数量
a, Ns, Ni, No = 2.0, 1460.0, 331.0, 1.0
Nh = Ns / (a * (Ni + No))
#其中,Ns为训练集样本数,Ni是输入层神经元个数,No为输出层神经元个数,a取(2, 10)
print(Nh)
loss = nn.MSELoss()
#loss = nn.CrossEntropyLoss() #交叉熵函数适合分类,而MSE函数适合回归
in_features = train_features.shape[1]
# 李沐大神这里使用了单层线性模型,尝试将其作为baseline
def get_net():
net = nn.Sequential(
nn.Linear(in_features, 8),
nn.ReLU(),
nn.Linear(8, 4),
nn.ReLU(),
nn.Linear(4, 1))
return net
def log_rmse(net, features, labels):
# 为了在取对数时进一步稳定该值,将小于1的值设置为1
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds),
torch.log(labels)))
return rmse.item()
# 训练函数
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
# 使用Adam优化器
optimizer = torch.optim.Adam(net.parameters(),
lr = learning_rate,
weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
# K折交叉验证
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
legend=['train', 'valid'], yscale='log')
print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
f'验证log rmse{float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
f'平均验证log rmse: {float(valid_l):f}')
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr,
weight_decay, batch_size):
net = get_net()
train_ls,_ = train(net, train_features, train_labels, None, None, num_epochs, lr,
weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'训练log rmse:{float(train_ls[-1]):f}')
# 将神经网络用于测试集
preds = net(test_features).detach().numpy()
# 将其重新格式化以导出到kaggle
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
模型实验部分:
首先我寻思着一层太少了,至少得一个隐藏层叭,因此加了一个2个神经单元的隐藏层,具体神经单元个数依照某个大神的公式算出来的,后面多做了几个实验发现这个公式真的有用,手动改变了将近十次神经单元个数发现最好的还是2。接下来做出来的结果差点笑死我:
属于是悬崖峭壁了,跳下来直接摔死。
接着我寻思着是不是层数少了捏,那么我再加一层!
下面是2个隐藏层,第一层是10个单元,第二层是4个的结果:
哇,什么叫壮观啊(战术后仰),刀山火海了属于是。
接着我寻思着是不是参数问题呢?我就开始了一顿乱调,该调的都调了,最后最好的结果是这个:
2个隐藏层,第一层8个单元,第二层4个:
非常不稳定,这次结果是0.128395,但是我后面又训练了一次,到了0.085左右。虽然不稳定但是架不住它结果不错啊哈哈哈哈哈哈,我捡了条值最低的模型,做了submission,传到了kaggle上排名。我那么一看,
居然还不错哈哈哈哈哈哈哈哈哈哈哈哈哈哈