在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。
参数名称 | 描述 |
---|---|
bootstrap.servers | 生产者连接集群所需的 broker 地址清单 。 例 如hadoop102:9092, hadoop103:9092, hadoop104:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者从给定的 broker里查找到其他 broker 信息。 |
key.serializer 和 value.serializer | 指定发送消息的 key 和 value 的序列化类型。一定要写全类名。 |
buffer.memory RecordAccumulator | 缓冲区总大小,默认 32m。 |
batch.size | 缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。 |
linger.ms | 如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。 |
acks | 0:生产者发送过来的数据,不需要等数据落盘应答。1:生产者发送过来的数据,Leader 收到数据后应答。-1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和all 是等价的。 |
max.in.flight.requests.per.connection | 允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字。 |
retries | 当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。 |
retry.backoff.ms | 两次重试之间的时间间隔,默认是 100ms。 |
enable.idempotence | 是否开启幂等性,默认 true,开启幂等性。 |
compression.type | 生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd。 |
需求: 创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker、
代码编写
A、创建工程 kafka
B、导入依赖
<dependencies>
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka-clientsartifactId>
<version>3.0.0version>
dependency>
dependencies>
C、创建包名:com.fancy.kafka.producer
D、编写不带回调函数的 API 代码
package com.fancy.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducer {
public static void main(String[] args) throws InterruptedException {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,org.apache.kafka.common.serialization.StringSerializer");
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new
KafkaProducer<String, String>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
kafkaProducer.send(new ProducerRecord<>("first","atguigu " + i));
}
// 5. 关闭资源
kafkaProducer.close();
}
}
测试:
① 在 hadoop102 上开启 Kafka 消费者。
[fancyry@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
② 在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。
[fancyry@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
fancyry 0
fancyry 1
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
发送流程:
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
package com.fancy.kafka.producer;
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {
public static void main(String[] args) throws InterruptedException {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"hadoop102:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
// 添加回调
kafkaProducer.send(new ProducerRecord<>("first", "fancyry " + i), new Callback() {
// 该方法在 Producer 收到 ack 时调用,为异步调用
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception == null) {
// 没有异常,输出信息到控制台
System.out.println(" 主 题 : " +
metadata.topic() + "->" + "分区:" + metadata.partition());
} else {
// 出现异常打印
exception.printStackTrace();
}
}
});
// 延迟一会会看到数据发往不同分区
Thread.sleep(2);
}
// 5. 关闭资源
kafkaProducer.close();
}
}
测试:
①在 hadoop102 上开启 Kafka 消费者。
[fancyry@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。
[fancyry@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
fancyry 0
fancyry 1
fancyry 2
fancyry 3
fancyry 4
③在 IDEA 控制台观察回调信息。
主题:first->分区:0
主题:first->分区:0
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
同步发送流程
package com.fancy.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducerSync {
public static void main(String[] args) throws InterruptedException, ExecutionException {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new
KafkaProducer<String, String>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 10; i++) {
// 异步发送 默认
// kafkaProducer.send(new
ProducerRecord<>("first","kafka" + i));
// 同步发送
kafkaProducer.send(new ProducerRecord<>("first","kafka" + i)).get();
}
// 5. 关闭资源
kafkaProducer.close();
}
}
测试:
① 在 hadoop102 上开启 Kafka 消费者。
[fancyry@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
② 在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。
[fancyry@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
A、默认的分区器 DefaultPartitioner
在 IDEA 中 ctrl +n,全局查找 DefaultPartitioner。
/**
* The default partitioning strategy:
*
* - If a partition is specified in the record, use it
*
- If no partition is specified but a key is present choose a
partition based on a hash of the key
*
- If no partition or key is present choose the sticky
partition that changes when the batch is full.
*
* See KIP-480 for details about sticky partitioning.
*/
public class DefaultPartitioner implements Partitioner {
... ...
}
案例一
将数据发往指定 partition 的情况下,例如,将所有数据发往分区 1 中。
package com.fancy.kafka.producer;
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallbackPartitions {
public static void main(String[] args) {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
for (int i = 0; i < 5; i++) {
// 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)
kafkaProducer.send(new ProducerRecord<>("first", 1, "","fancyry " + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e == null){
System.out.println(" 主 题 : " +
metadata.topic() + "->" + "分区:" + metadata.partition()
);
}else {
e.printStackTrace();
}
}
});
}
kafkaProducer.close();
}
}
测试:
① 在 hadoop102 上开启 Kafka 消费者。
[fancyry@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
② 在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。
[fancyry@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
fancyry 0
fancyry 1
fancyry 2
fancyry 3
fancyry 4
③ 在 IDEA 控制台观察回调信息。
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
案例二
没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值。
package com.fancyry.kafka.producer;
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
for (int i = 0; i < 5; i++) {
// 依次指定 key 值为 a,b,f ,数据 key 的 hash 值与 3 个分区求余,分别发往 1、2、0
kafkaProducer.send(new ProducerRecord<>("first", "a","fancyry " + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e == null){
System.out.println(" 主 题 : " + metadata.topic() + "->" + "分区:" + metadata.partition());
} else {
e.printStackTrace();
}
}
});
}
kafkaProducer.close();
}
}
测试:
① key="a"时,在控制台查看结果。
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
② key="b"时,在控制台查看结果。
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
③ key="f"时,在控制台查看结果。
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
如果研发人员可以根据企业需求,自己重新实现分区器。
A、需求
例如我们实现一个分区器实现,发送过来的数据中如果包含 fancyry,就发往 0 号分区,不包含 fancyry,就发往 1 号分区。
B、实现步骤
定义类实现 Partitioner 接口。
重写 partition()方法。
package com.fancyry.kafka.producer;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import java.util.Map;
/**
* 1. 实现接口 Partitioner
* 2. 实现 3 个方法:partition,close,configure
* 3. 编写 partition 方法,返回分区号
*/
public class MyPartitioner implements Partitioner {
/*** 返回信息对应的分区
* @param topic 主题
* @param key 消息的 key
* @param keyBytes 消息的 key 序列化后的字节数组
* @param value 消息的 value
* @param valueBytes 消息的 value 序列化后的字节数组
* @param cluster 集群元数据可以查看分区信息
* @return
*/
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
// 获取消息
String msgValue = value.toString();
// 创建 partition
int partition;
// 判断消息是否包含 atguigu
if (msgValue.contains("atguigu")){
partition = 0;
}else {
partition = 1;
}
// 返回分区号
return partition;
}
// 关闭资源
@Override
public void close() {
}
// 配置方法
@Override
public void configure(Map<String, ?> configs) {
}
}
使用分区器的方法,在生产者的配置中添加分区器参数。
package com.fancy.kafka.producer;
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallbackPartitions {
public static void main(String[] args) throws InterruptedException {
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
// 添加自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.fancy.kafka.producer.MyPartitioner");
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
for (int i = 0; i < 5; i++) {
kafkaProducer.send(new ProducerRecord<>("first", "fancy " + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e == null){
System.out.println(" 主 题 : " + metadata.topic() + "->" + "分区:" + metadata.partition());
} else {
e.printStackTrace();
}
}
});
}
kafkaProducer.close();
}
}
测试
①在 hadoop102 上开启 Kafka 消费者。
[fancyry@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
②在 IDEA 控制台观察回调信息。
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0