。
中公教育联合中科院专家打造的深度学习分八个阶段进行学习:第一阶段AI概述及前沿应用成果介绍深度学习的最新应用成果单层/深度学习与机器学习人工智能的关系及发展简第二阶段神经网络原理及TensorFlow实战梯度下降优化方法前馈神经网络的基本结构和训练过程反向传播算法TensorFlow开发环境安装“计算图”编程模型深度学习中图像识别的操作原理第三阶段循环神经网络原理及项目实战语言模型及词嵌入词嵌入的学习过程循环神经网络的基本结构时间序列反向传播算法长短时记忆网络(LSTM)的基本结构LSTM实现语言模型第四阶段生成式对抗网络原理及项目实战生成式对抗网络(GAN)的基本结构和原理GAN的训练过程GAN用于图片生成的实现第五阶段深度学习的分布式处理及项目实战多GPU并行实现分布式并行的环境搭建分布式并行实现第六阶段深度强化学习及项目实战强化学习介绍智能体Agent的深度决策机制(上)智能体Agent的深度决策机制(中)智能体Agent的深度决策机制(下)第七阶段车牌识别项目实战数据集介绍及项目需求分析OpenCV库介绍及车牌定位车牌定位车牌识别学员项目案例评讲第八阶段深度学习前沿技术简介深度学习前沿技术简介元学习迁移学习等详情查看深度学习。
谷歌人工智能写作项目:小发猫
用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客AI爱发猫。
#coding:utf-8''' GPU run command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python CPU run command: python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。
'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024) # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。
1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。
4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。
4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。
verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator( featurewise_center=True, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=True, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.2, # randomly shift images horizontally (fraction of total width) height_shift_range=0.2, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch): print('-'*40) print('Epoch', e) print('-'*40) print("Training...") # batch train with realtime data augmentation progbar = generic_utils.Progbar(data.shape[0]) for X_batch, Y_batch in (data, label): loss,accuracy = model.train(X_batch, Y_batch,accuracy=True) (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。
。
importmathimportrandom(0)defrand(a,b):#随机函数return(b-a)*random.random()+adefmake_matrix(m,n,fill=0.0):#创建一个指定大小的矩阵mat=[]foriinrange(m):mat.append([fill]*n)returnmat#定义sigmoid函数和它的导数defsigmoid(x):return1.0/((-x))defsigmoid_derivate(x):returnx*(1-x)#sigmoid函数的导数classBPNeuralNetwork:def__init__(self):#初始化变量self.input_n=0self.hidden_n=0self.output_n=0self.input_cells=[]self.hidden_cells=[]self.output_cells=[]self.input_weights=[]self.output_weights=[]self.input_correction=[]self.output_correction=[]#三个列表维护:输入层,隐含层,输出层神经元defsetup(self,ni,nh,no):self.input_n=ni+1#输入层+偏置项self.hidden_n=nh#隐含层self.output_n=no#输出层#初始化神经元self.input_cells=[1.0]*self.input_nself.hidden_cells=[1.0]*self.hidden_nself.output_cells=[1.0]*self.output_n#初始化连接边的边权self.input_weights=make_matrix(self.input_n,self.hidden_n)#邻接矩阵存边权:输入层->隐藏层self.output_weights=make_matrix(self.hidden_n,self.output_n)#邻接矩阵存边权:隐藏层->输出层#随机初始化边权:为了反向传导做准备--->随机初始化的目的是使对称失效foriinrange(self.input_n):forhinrange(self.hidden_n):self.input_weights[i][h]=rand(-0.2,0.2)#由输入层第i个元素到隐藏层第j个元素的边权为随机值forhinrange(self.hidden_n):foroinrange(self.output_n):self.output_weights[h][o]=rand(-2.0,2.0)#由隐藏层第i个元素到输出层第j个元素的边权为随机值#保存校正矩阵,为了以后误差做调整self.input_correction=make_matrix(self.input_n,self.hidden_n)self.output_correction=make_matrix(self.hidden_n,self.output_n)#输出预测值defpredict(self,inputs):#对输入层进行操作转化样本foriinrange(self.input_n-1):self.input_cells[i]=inputs[i]#n个样本从0~n-1#计算隐藏层的输出,每个节点最终的输出值就是权值*节点值的加权和forjinrange(self.hidden_n):total=0.0foriinrange(self.input_n):total+=self.input_cells[i]*self.input_weights[i][j]#此处为何是先i再j,以隐含层节点做大循环,输入样本为小循环,是为了每一个隐藏节点计算一个输出值,传输到下一层self.hidden_cells[j]=sigmoid(total)#此节点的输出是前一层所有输入点和到该点之间的权值加权和forkinrange(self.output_n):total=0.0forjinrange(self.hidden_n):total+=self.hidden_cells[j]*self.output_weights[j][k]self.output_cells[k]=sigmoid(total)#获取输出层每个元素的值returnself.output_cells[:]#最后输出层的结果返回#反向传播算法:调用预测函数,根据反向传播获取权重后前向预测,将结果与实际结果返回比较误差defback_propagate(self,case,label,learn,correct):#对输入样本做预测self.predict(case)#对实例进行预测output_deltas=[0.0]*self.output_n#初始化矩阵foroinrange(self.output_n):error=label[o]-self.output_cells[o]#正确结果和预测结果的误差:0,1,-1output_deltas[o]=sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内#隐含层误差hidden_deltas=[0.0]*self.hidden_nforhinrange(self.hidden_n):error=0.0foroinrange(self.output_n):error+=output_deltas[o]*self.output_weights[h][o]hidden_deltas[h]=sigmoid_derivate(self.hidden_cells[h])*error#反向传播算法求W#更新隐藏层->输出权重forhinrange(self.hidden_n):foroinrange(self.output_n):change=output_deltas[o]*self.hidden_cells[h]#调整权重:上一层每个节点的权重学习*变化+矫正率self.output_weights[h][o]+=learn*change+correct*self.output_correction[h][o]#更新输入->隐藏层的权重foriinrange(self.input_n):forhinrange(self.hidden_n):change=hidden_deltas[h]*self.input_cells[i]self.input_weights[i][h]+=learn*change+correct*self.input_correction[i][h]self.input_correction[i][h]=change#获取全局误差error=0.0foroinrange(len(label)):error=0.5*(label[o]-self.output_cells[o])**2#平方误差函数returnerrordeftrain(self,cases,labels,limit=10000,learn=0.05,correct=0.1):foriinrange(limit):#设置迭代次数error=0.0forjinrange(len(cases)):#对输入层进行访问label=labels[j]case=cases[j]error+=self.back_propagate(case,label,learn,correct)#样例,标签,学习率,正确阈值deftest(self):#学习异或cases=[[0,0],[0,1],[1,0],[1,1],]#测试样例labels=[[0],[1],[1],[0]]#标签self.setup(2,5,1)#初始化神经网络:输入层,隐藏层,输出层元素个数self.train(cases,labels,10000,0.05,0.1)#可以更改forcaseincases:print(self.predict(case))if__name__=='__main__':nn=BPNeuralNetwork()()。
。
由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:第一:CaffeCaffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。
Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与State-of-the-art的模型,模块化的组件可以方便地拓展到新的模型与学习任务上。
第二:TheanoTheano诞生于2008年,是一个高性能的符号计算及深度学习库,被认为是深度学习库的始祖之一,也被认为是深度学习研究和应用的重要标准之一。
其核心是一个数学表达式的编译器,专门为处理大规模神经网络训练的计算而设计。
Theano很好地整合了Numpy,可以直接使用Numpy的Ndarray,使得API接口学习成本大为降低;其计算稳定性好,可以精准地计算输出值很小的函数;可动态地生成C或者CUDA代码,用来编译成高效的机器代码。
第三:TensorFlowTensorFlow是相对高阶的机器学习库,其核心代码使用C++编写,并支持自动求导,使得用户可以方便地设计神经网络结构,不需要亲自编写C++或CUDA代码,也无须通过反向传播求解梯度。
由于底层使用C++语言编写,运行效率得到了保证,并简化线上部署的复杂度。TensorFlow不只局限于神经网络,其数据流式图还支持非常自由的算法表达,也可以轻松实现深度学习以外的机器学习算法。
第四:KerasKeras是一个高度模块化的神经网络库,使用Python实现,并可以同时运行在TensorFlow和Theano上。
Keras专精于深度学习,其提供了到目前为止最方便的API,用户仅需将高级的模块拼在一起便可设计神经网络,大大降低了编程开销与理解开销。
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!
下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。
突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。
我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?
你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。训练过程但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。
拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。
计算误差,即神经元的输出与训练样本中的期待输出之间的差值。根据误差略微地调整权重。重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。
如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。这个过程就是backpropagation。计算神经元输出的公式你可能会想,计算神经元输出的公式是什么?
首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。
把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。调整权重的公式我们在训练时不断调整权重。但是怎么调整呢?
可以使用“ErrorWeightedDerivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。
最后,乘以Sigmoid曲线的斜率(图4)。
为了理解最后一条,考虑这些:我们使用Sigmoid曲线计算神经元的输出如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式从图四可以看出,在较大数值处,Sigmoid曲线斜率小如果神经元认为当前权重是正确的,就不会对它进行很大调整。
乘以Sigmoid曲线斜率便可以实现这一点Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。
构造Python代码虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。
分别是:exp--自然指数array--创建矩阵dot--进行矩阵乘法random--产生随机数比如,我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。
所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。
所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。我们做到了!我们用Python构建了一个简单的神经网络!首先神经网络对自己赋予随机权重,然后使用训练集训练自己。
接着,它考虑一种新的情形[1,0,0]并且预测了0.99993704。正确答案是1。非常接近!传统计算机程序通常不会学习。
而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。
最基础的部分的话需要:线性代数,机器学习,微积分,优化等等。
几乎所有操作都有矩阵运算,所以至少最基础的线性代数需要掌握建议从单一的感知机Perceptron出发,继而认识到DecisionBoundary(判别边界),以及最简单的一些“监督训练”的概念等,有机器学习的基础最好。
就结果而言,诸如“过拟合”之类的概念,以及对应的解决方法比如L1L2归一,学习率等也都可以从单个感知机的概念开始入门。从单层感知器推广到普通的多层感知器MLP。
然后推广到简单的神经网络(激活函数从阶跃“软化”为诸如tanh等类型的函数),然后引入特定类型的网络结构,比如最基本的全连接、前向传播等等概念。
进而学习训练算法,比如反向传播,这需要微积分的知识(Chainrule),以及非线性优化的最基础部分,比如梯度下降法。
其次至少需要具备一些适用于研究的编程语言的技能,例如python,matlab,(C++也可行)等,哪怕不自己实现最简单的神经网络而是用API,也是需要一定计算机能力才能应用之。
。
1.Scikit-learnScikit-learn是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,GradientBoosting,聚类算法和DBSCAN。