• yolov7训练自定义数据集时的注意事项


    慢慢记录吧

    yolov7的数据集格式和yolov5是一样的,基本上直接将yolov5的数据集拿过来用即可

     文件层级:

    ├—data
    
    │ ├—train
    
    │ │ ├—images
    │ │ │ ├—000000000001.jpg
    │ │ │ ├—000000000002.jpg
    │ │ ├—labels
    │ │ │ ├—000000000001.txt
    │ │ │ ├—000000000002.txt
    
    │ ├—valid
    │ │ ├—images
    │ │ ├—labels

     区别就在yaml文件上,

    yolov5的文件格式:

     yolov7的文件格式:

    区别就是没了path,主要是有些数据比较大,不想移来移去,所以直接修改v7的代码

    主要修改的是yolov7\utils\general.py

    将以下代码加入check_dataset函数即可:

    1. FILE = Path(__file__).resolve()
    2. ROOT = FILE.parents[1]
    3. path = Path(dict.get('path') or '')
    4. if not path.is_absolute():
    5. path = (ROOT / path).resolve()
    6. for k in 'train', 'val', 'test':
    7. if dict.get(k): # prepend path
    8. dict[k] = str(path / dict[k]) if isinstance(dict[k], str) else [str(path / x) for x in dict[k]]
    1. def check_dataset(dict):
    2. FILE = Path(__file__).resolve()
    3. ROOT = FILE.parents[1]
    4. path = Path(dict.get('path') or '')
    5. if not path.is_absolute():
    6. path = (ROOT / path).resolve()
    7. for k in 'train', 'val', 'test':
    8. if dict.get(k): # prepend path
    9. dict[k] = str(path / dict[k]) if isinstance(dict[k], str) else [str(path / x) for x in dict[k]]
    10. # Download dataset if not found locally
    11. val, s = dict.get('val'), dict.get('download')
    12. if val and len(val):
    13. val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
    14. if not all(x.exists() for x in val):
    15. print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
    16. if s and len(s): # download script
    17. print('Downloading %s ...' % s)
    18. if s.startswith('http') and s.endswith('.zip'): # URL
    19. f = Path(s).name # filename
    20. torch.hub.download_url_to_file(s, f)
    21. r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
    22. else: # bash script
    23. r = os.system(s)
    24. print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
    25. else:
    26. raise Exception('Dataset not found.')

            这样就只需要在配置文件中改数据集路径即可。

            还有点需要注意就是用yolov5训练后的cache文件,在训练yolov7时要删除,不然会报_pickle.UnpicklingError: STACK_GLOBAL requires str

  • 相关阅读:
    Win10系统C++调用OpenCV实现网络摄像头录像和抓拍图片
    spark向hadoop写入文件后,查路径为目录,无法查值
    C++内存检查
    利用pearcmd实现裸文件包含
    VD6283TX环境光传感器驱动开发(1)----获取ID
    Python 自动化测试中最火的第三方开源测试框架 pytest
    SpringBoot:SpringBoot常用注解
    数据科学AB测试(说人话系列)
    Java学习笔记6.1.2 字节流 - 文件字节输入流和文件字节输出流
    大话YOLOV5
  • 原文地址:https://blog.csdn.net/athrunsunny/article/details/126307321