• 葡萄酒数据集


    原文:

    Wine Data Set

    Using chemical analysis determine the origin of wines

    These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

    I think that the initial data set had around 30 variables, but for some reason I only have the 13 dimensional version. I had a list of what the 30 or so variables were, but a.) I lost it, and b.), I would not know which 13 variables are included in the set.

    The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it )

    1) Alcohol

    2) Malic acid

    3) Ash

    4) Alcalinity of ash

    5) Magnesium

    6) Total phenols

    7) Flavanoids

    8) Nonflavanoid phenols

    9) Proanthocyanins

    10)Color intensity

    11)Hue

    12)OD280/OD315 of diluted wines

    13)Proline

    In a classification context, this is a well posed problem with "well behaved" class structures. A good data set for first testing of a new classifier, but not very challenging.

    译:

    葡萄酒数据集

    使用化学分析确定葡萄酒的来源

    这些数据是对生长在意大利同一地区但来自三个不同品种的葡萄酒进行化学分析的结果。分析确定了在三种葡萄酒中每种葡萄酒中发现的13种成分的数量。

    我认为初始数据集大约有30个变量,但由于某些原因,我只有13维版本。我有一个30个左右变量的列表,但a.)我丢失了,b.)我不知道该集中包括哪13个变量。

    属性是(由Riccardo Leardi,riclea'@'anchem.unige.it提供)

    1) 酒精

    2) 苹果酸

    3) 灰烬

    4) 灰的碱性

    5) 镁

    6) 总酚

    7) 类黄酮

    8) 非挥发性酚类

    9) 原花青素

    10) 颜色强度

    11) 色调

    12) 稀释葡萄酒的OD280/OD315

    13) 脯氨酸

    在分类上下文中,这是一个具有“行为良好”类结构的适定问题。对于新分类器的首次测试来说,这是一个很好的数据集,但不是很有挑战性。

    样例数据:

    1. 1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
    2. 1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
    3. 1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
    4. 1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
    5. 1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
    6. 1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450
    7. 1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290
    8. 1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295
    9. 1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045
    10. 1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045
    11. 1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510
    12. 1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280
    13. 1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320
    14. 1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150
    15. 1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547

     

  • 相关阅读:
    Spring 源码(14)Spring Bean 的创建过程(5)
    排序算法,冒泡排序算法及优化,选择排序SelectionSort,快速排序(递归-分区)
    【博客475】alertmanager集群如何同步数据
    lab1-3 使用通用脱壳工具
    「Verilog学习笔记」用3-8译码器实现全减器
    玩家们同样开始将流量当成了产业互联网的重点对象
    强化学习入门
    面试题:你是如何计划和组织一个大型的软件测试项目的?
    包管理工具--》发布一个自己的npm包
    c#-特殊的集合
  • 原文地址:https://blog.csdn.net/ISWZY/article/details/126304364