证明:
S △ D C E S △ A B C = C D ∗ C E A C ∗ B C \frac {S△DCE} {S△ABC} = \frac {CD * CE} {AC * BC} S△ABCS△DCE=AC∗BCCD∗CE
做辅助线 BE,构造等高模型。
S △ C E D S △ B E C = C D B C \frac {S△CED} {S△BEC} = \frac {CD} {BC} S△BECS△CED=BCCD
S △ B E C S △ A B C = C E A C \frac {S△BEC} {S△ABC } = \frac {CE} {AC} S△ABCS△BEC=ACCE
(1) 式 乘以 (2) 式:
S △ C E D S △ B E C ∗ S △ B E C S △ A B C = S △ C E D S △ A B C = C D ∗ C E A C ∗ B C \frac {S△CED} {S△BEC} * \frac {S△BEC} {S△ABC} = \frac {S△CED} {S△ABC} = \frac {CD * CE} {AC * BC} S△BECS△CED∗S△ABCS△BEC=S△ABCS△CED=AC∗BCCD∗CE