• 【智能优化算法-鲸鱼算法】基于鲸鱼算法求解多目标优化问题附matlab代码(NSWOA)


    1 内容介绍

    为了解决多目标优化的相关问题,鲸鱼优化算法结合多目标相关理论,并在算法中加入了非排序思路,提出了一种求解多目标问题的鲸鱼优化算法.​

    2 仿真代码

    %% Non Sorted Whale Optimization Algorithm (NSWOA)

    % NSWOA is developed by Pradeep Jangir

    %% Objective Function

    % The objective function description contains information about the

    % objective function. M is the dimension of the objective space, D is the

    % dimension of decision variable space, LB and UB are the

    % range for the variables in the decision variable space. User has to

    % define the objective functions using the decision variables. Make sure to

    % edit the function 'evaluate_objective' to suit your needs.

    clc

    clear all

    D = 30; % Number of decision variables

    M = 2; % Number of objective functions

    K=M+D;

    LB = ones(1, D).*0; %  LB - A vector of decimal values which indicate the minimum value for each decision variable.

    UB = ones(1, D).*1; % UB - Vector of maximum possible values for decision variables.

    Max_iteration = 100;  % Set the maximum number of generation (GEN)

    SearchAgents_no = 100;      % Set the population size (Search Agent)

    ishow = 10;

    %% Initialize the population

    % Population is initialized with random values which are within the

    % specified range. Each chromosome consists of the decision variables. Also

    % the value of the objective functions, rank and crowding distance

    % information is also added to the chromosome vector but only the elements

    % of the vector which has the decision variables are operated upon to

    % perform the genetic operations like corssover and mutation.

    chromosome = initialize_variables(SearchAgents_no, M, D, LB, UB);

    %% Sort the initialized population

    % Sort the population using non-domination-sort. This returns two columns

    % for each individual which are the rank and the crowding distance

    % corresponding to their position in the front they belong. At this stage

    % the rank and the crowding distance for each chromosome is added to the

    % chromosome vector for easy of computation.

    intermediate_chromosome = non_domination_sort_mod(chromosome, M, D);

    %% Perform Selection

    % Once the intermediate population is sorted only the best solution is

    % selected based on it rank and crowding distance. Each front is filled in

    % ascending order until the addition of population size is reached. The

    % last front is included in the population based on the individuals with

    % least crowding distance

    % Select NP fittest solutions using non dominated and crowding distance

    % sorting and store in population

    Population = replace_chromosome(intermediate_chromosome, M,D,SearchAgents_no);

    %% Start the evolution process

    % The following are performed in each generation

    % * Select the parents which are fit for reproduction

    % * Perfrom crossover and Mutation operator on the selected parents

    % * Perform Selection from the parents and the offsprings

    % * Replace the unfit individuals with the fit individuals to maintain a

    %   constant population size.

    Pareto = NSWOA(D,M,LB,UB,Population,SearchAgents_no,Max_iteration,ishow);

    save Pareto.txt Pareto -ascii;  % save data for future use

    %% Plot data

    if M == 2

        plot_data2(M,D,Pareto)

    elseif M == 3

        plot_data_TCQ(M,D,Pareto); 

    end

    3 运行结果

    4 参考文献

    [1]滕德云, 滕欢, 刘鑫,等. 基于改进鲸鱼优化算法的多目标无功优化调度[J]. 电力电容器与无功补偿, 2019, 40(3):7.

    [2]梁倩. 基于反向精英保留和Levy变异的多目标鲸鱼优化算法[J]. 现代计算机, 2021(18):7.

    博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

  • 相关阅读:
    java正则表达式
    什么是泄放电阻器:您应该知道的 11 个重要事实?
    hive 中少量数据验证函数的方法-stack
    HarmonyOS ArkUI实战开发-NAPI方法扩展
    nodejs+vue+elementui 青少年编程在线考试系统python java php
    cocos 构建发布没有对话框
    园区网典型配置案例
    消息队列常见问题整理
    Netty编程面试题
    双指针算法_移动零_
  • 原文地址:https://blog.csdn.net/qq_59747472/article/details/126300206