在yolov5s.ymal文件中,
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple。
通道深度(残差数)及宽度(通道数)相对标准的比例。
标准的backbone中的C3的number分别为:3、6、9、3
yolov5s的backbone中的C3的number为:1,、2、3、1 (depth_multiple*number)
同理网络宽度width_multiple*args[0]。
- -------------------------------------0-P1/2----------------------------------------------
- model.0.conv.weight --------- torch.Size([32, 3, 6, 6])
- model.0.bn.weight --------- torch.Size([32])
- model.0.bn.bias --------- torch.Size([32])
- -------------------------------------1-P2/4----------------------------------------------
- model.1.conv.weight --------- torch.Size([64, 32, 3, 3])
- model.1.bn.weight --------- torch.Size([64])
- model.1.bn.bias --------- torch.Size([64])
-
- -------------------------------------C3----------------------------------------------
- **cv1**
- model.2.cv1.conv.weight --------- torch.Size([32, 64, 1, 1])
- model.2.cv1.bn.weight --------- torch.Size([32]) ***
- model.2.cv1.bn.bias --------- torch.Size([32]) ***
- **cv2**
- model.2.cv2.conv.weight --------- torch.Size([32, 64, 1, 1])
- model.2.cv2.bn.weight --------- torch.Size([32])
- model.2.cv2.bn.bias --------- torch.Size([32])
- **cv3**
- model.2.cv3.conv.weight --------- torch.Size([64, 64, 1, 1])
- model.2.cv3.bn.weight --------- torch.Size([64])
- model.2.cv3.bn.bias --------- torch.Size([64])
-
- bneck:*1
- model.2.m.0.cv1.conv.weight --------- torch.Size([32, 32, 1, 1])
- model.2.m.0.cv1.bn.weight --------- torch.Size([32]) ***
- model.2.m.0.cv1.bn.bias --------- torch.Size([32]) ***
- model.2.m.0.cv2.conv.weight --------- torch.Size([32, 32, 3, 3])
- model.2.m.0.cv2.bn.weight --------- torch.Size([32]) ***
- model.2.m.0.cv2.bn.bias --------- torch.Size([32]) ***
-
- -------------------------------------3-P3/8----------------------------------------------
- model.3.conv.weight --------- torch.Size([128, 64, 3, 3])
- model.3.bn.weight --------- torch.Size([128])
- model.3.bn.bias --------- torch.Size([128])
-
- -------------------------------------C3----------------------------------------------
- **cv1**
- model.4.cv1.conv.weight --------- torch.Size([64, 128, 1, 1])
- model.4.cv1.bn.weight --------- torch.Size([64]) ***
- model.4.cv1.bn.bias --------- torch.Size([64]) ***
- **cv2**
- model.4.cv2.conv.weight --------- torch.Size([64, 128, 1, 1])
- model.4.cv2.bn.weight --------- torch.Size([64])
- model.4.cv2.bn.bias --------- torch.Size([64])
- **cv3**
- model.4.cv3.conv.weight --------- torch.Size([128, 128, 1, 1])
- model.4.cv3.bn.weight --------- torch.Size([128])
- model.4.cv3.bn.bias --------- torch.Size([128])
- **bneck1**
- model.4.m.0.cv1.conv.weight --------- torch.Size([64, 64, 1, 1])
- model.4.m.0.cv1.bn.weight --------- torch.Size([64])
- model.4.m.0.cv1.bn.bias --------- torch.Size([64])
- model.4.m.0.cv2.conv.weight --------- torch.Size([64, 64, 3, 3])
- model.4.m.0.cv2.bn.weight --------- torch.Size([64])
- model.4.m.0.cv2.bn.bias --------- torch.Size([64])
- **bneck2**
- model.4.m.1.cv1.conv.weight --------- torch.Size([64, 64, 1, 1])
- model.4.m.1.cv1.bn.weight --------- torch.Size([64])
- model.4.m.1.cv1.bn.bias --------- torch.Size([64])
- model.4.m.1.cv2.conv.weight --------- torch.Size([64, 64, 3, 3])
- model.4.m.1.cv2.bn.weight --------- torch.Size([64])
- model.4.m.1.cv2.bn.bias --------- torch.Size([64])
-
- -------------------------------------5-P4/16----------------------------------------------
- model.5.conv.weight --------- torch.Size([256, 128, 3, 3])
- model.5.bn.weight --------- torch.Size([256])
- model.5.bn.bias --------- torch.Size([256])
-
-
- 。。。。。。
-
本文选择yolov5s进行通道剪枝,同样根据BN层稀疏化达到剪枝效果。在yolov5s结构中存在shortcut与cat,主路与支路合并操作。其中shortcut是将前层与后层特征相加,cat是通道连接,而shortcut必须保证前后层的通道数一致才可相加。如果shortcut的前后层参与剪枝,就无法保证前后层的通道数一致,所以剪枝过程中必须剔除参与shortcut操作的卷积层,而cat操作则不影响。
yolov5s的C3模块的Bottleneck结构中存在shortcut操作。为了避免BN层稀疏后,通道数不匹配,所以所有的残差结构都不剪枝。
C3:
- class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2 #通道相同直接相加。
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
- class C3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)#支路
- self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
-
- def forward(self, x):
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
C3结构:
所以C3结构中cv1、cv2参与剪枝。
剔除C3结构中不参与剪枝的卷积层 。
- #-------------------------------parse---------------------------
- srtmp=opt.sr*(1-0.9*epoch/epochs)
- if opt.st:
- ignore_bn_list=[]
- #记录bottleneck中所有bn层
- #C3结构中第一个卷积层与bneck中conv层不剪枝
- #即参与add操作有三层conv
- for k,m in model.named_modules():
- if isinstance(m,Bottleneck):
- if m.add:
- ignore_bn_list.append(k.split('.',2)[0]+'.cv1.bn')
- ignore_bn_list.append(k+ '.cv1.bn')
- ignore_bn_list.append(k + '.cv2.bn')
- if isinstance(k,nn.BatchNorm2d) and (k not in ignore_bn_list):
- m.weight.grad.data.add_(srtmp*torch.sign(m.weight.data))
- m.bias.grad.data.add_(opt.sr*10 * torch.sign(m.weight.bias))
- print(ignore_bn_list)
规整剪枝与正常剪枝。
正常剪枝
需剪枝的bn层
- bn_layers= {}
- ignore_bn_layers=[]
- for layer_name,layer_model in model.named_modules():
- if isinstance(layer_model,Bottleneck):
- if layer_model.add:
- ignore_bn_layers.append(layer_name.rsplit('.',2)[0]+'.cv1.bn')#C3中第一个conv
- ignore_bn_layers.append(layer_name+'.cv1.bn')#bottleneck中第一个conv
- ignore_bn_layers.append(layer_name+'.cv2.bn')#bottleneck中第一个conv
- if isinstance(layer_model,nn.BatchNorm2d) and (layer_name not in ignore_bn_layers):
- # print(ignore_bn_layers,layer_name)
- #未剔除全,主要是每次遍历进入C3中时,cv1没剔除,直到bneck中才开始。
- bn_layers[layer_name]=layer_model
-
- # print(ignore_bn_layers,)
- # print(len(ignore_bn_layers))
- # print(bn_layers)
- # print(len(bn_layers))
- # exit()
- #再次过滤4个C3中的第一个cv层
- bn_layers= {k:v for k,v in bn_layers.items() if k not in ignore_bn_layers}
- # print(bn_names)
- # print(len(bn_names))
- # exit()
统计所有BN层通道数量及各通道的权重值,对权重进行排序,并计算得到索引阈值。
- bn_size=[da.weight.data.shape[0] for da in bn_layers.values()]
- total_size=sum(bn_size)
- print(total_size)
- bn_weights=torch.zeros(total_size)
- start=0
- for i,w in enumerate(bn_layers.values()):
- size=w.weight.data.shape[0]
- bn_weights[start:(start+size)] = w.weight.data.abs().clone()
- start+=bn_size[i]
- print(bn_weights,bn_weights.shape)
-
- bn_data,id=torch.sort(bn_weights)
-
- thresh_index=int(percent*total_size)
- thresh_weight=bn_data[thresh_index]
- print(thresh_index,thresh_weight)
- print(f'Gamma value that less than {thresh_weight:.4f} are set to zero!')
- print("=" * 94)
- print(f"|\t{'layer name':<25}{'|':<10}{'origin channels':<20}{'|':<10}{'remaining channels':<20}|")
存在问题:
根据阈值来分隔,可能存在某一BN层所有通道均小于阈值,如果将其过滤掉,会造成层层之间的断开,此时需要做判断进行限制,使得每层最少有一个通道得以保留。
解决方法:获取每个bn层的权重的最大值,然后在这些最大值中取最小值与设定的阈值进行对比,如果小于阈值,则提示修改。
- # 避免剪掉所有channel的最高阈值(每个BN层的gamma的最大值的最小值即为阈值上限)
- highest_thre = []
- for bnlayer in bn_layers.values():
- highest_thre.append(bnlayer.weight.data.abs().max().item())
- # print("highest_thre:",highest_thre)
- highest_thre = min(highest_thre)
- # 找到highest_thre对应的下标对应的百分比
- percent_limit = (bn_data == highest_thre).nonzero()[0, 0].item() / len(bn_weights)
-
- print(f'Suggested Gamma threshold should be less than {highest_thre:.4f}.')
- print(f'The corresponding prune ratio is {percent_limit:.3f}, but you can set higher.')
-
重新设置模型文件
- pruned_num=0
- pruned_yaml = {}
- nc = model.model[-1].nc
- with open(cfg, encoding='ascii', errors='ignore') as f:
- model_yamls = yaml.safe_load(f) # model dict
- # # Define model
- pruned_yaml["nc"] = model.model[-1].nc
- pruned_yaml["depth_multiple"] = model_yamls["depth_multiple"]
- pruned_yaml["width_multiple"] = model_yamls["width_multiple"]
- pruned_yaml["anchors"] = model_yamls["anchors"]
- anchors = model_yamls["anchors"]
- pruned_yaml["backbone"] = [
- [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
- [-1, 3, C3Pruned, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
- [-1, 6, C3Pruned, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
- [-1, 9, C3Pruned, [512]],
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
- [-1, 3, C3Pruned, [1024]],
- [-1, 1, SPPFPruned, [1024, 5]], # 9
- ]
- pruned_yaml["head"] = [
- [-1, 1, Conv, [512, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
- [-1, 3, C3Pruned, [512, False]], # 13
-
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
- [-1, 3, C3Pruned, [256, False]], # 17 (P3/8-small)
-
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, 14], 1, Concat, [1]], # cat head P4
- [-1, 3, C3Pruned, [512, False]], # 20 (P4/16-medium)
-
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, 10], 1, Concat, [1]], # cat head P5
- [-1, 3, C3Pruned, [1024, False]], # 23 (P5/32-large)
-
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
模型重构:
- maskbndict={}
- remain_num=0
- for name,layer in model.named_modules():
- if isinstance(layer,nn.BatchNorm2d):
- bn_model=layer
- mask=obtain_bn_mask(bn_model,thresh_weight)
- # print(mask)
- if name in ignore_bn_layers:
- # print('-----')
- mask=torch.ones(layer.weight.data.size()).cuda()
- maskbndict[name]=mask
- # print(mask)
- remain_num+=int(mask.sum())
- bn_model.weight.data.mul_(mask)
- bn_model.bias.data.mul_(mask)
- print(f"|\t{name:<25}{'|':<10}{bn_model.weight.data.size()[0]:<20}{'|':<10}{int(mask.sum()):<20}|")
- assert int(
- mask.sum()) > 0, "Current remaining channel must greater than 0!!! please set prune percent to lower thesh, or you can retrain a more sparse model..."
-
- print("=" * 94)
-
-
- pruned_model=ModelPruned(maskbndict=maskbndict,cfg=pruned_yaml,ch=3).cuda()
- for m in pruned_model.modules():
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
- m.inplace = True # pytorch 1.7.0 compatibility
- elif type(m) is Conv:
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
- from_to_map=pruned_model.from_to_map
- pruned_model_state=pruned_model.state_dict()
参数拷贝:
- #-----------------------------参数拷贝----------------------------
- modelstate = model.state_dict()
- changed_state=[]
- for((layername,layermodel),(pruned_layername,pruned_layermodel)) in zip(model.named_modules(),pruned_model.named_modules()):
- if isinstance(layermodel,nn.Conv2d) and not layername.startswith("model.24"):
- convname=layername[:-4]+"bn"
- if convname in from_to_map.keys():
- former=from_to_map[convname]
- if isinstance(former,str):
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
- in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
- w = layermodel.weight.data[:, in_idx, :, :].clone()
-
- if len(w.shape) == 3: # remain only 1 channel.
- w = w.unsqueeze(1)
- w = w[out_idx, :, :, :].clone()
-
- pruned_layermodel.weight.data = w.clone()
- changed_state.append(layername + ".weight")
- if isinstance(former, list):
- orignin = [modelstate[i + ".weight"].shape[0] for i in former]
- formerin = []
- for it in range(len(former)):
- name = former[it]
- tmp = [i for i in range(maskbndict[name].shape[0]) if maskbndict[name][i] == 1]
- if it > 0:
- tmp = [k + sum(orignin[:it]) for k in tmp]
- formerin.extend(tmp)
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
- w = layermodel.weight.data[out_idx, :, :, :].clone()
- pruned_layermodel.weight.data = w[:, formerin, :, :].clone()
- changed_state.append(layername + ".weight")
- else:
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
- w = layermodel.weight.data[out_idx, :, :, :].clone()
- assert len(w.shape) == 4
- pruned_layermodel.weight.data = w.clone()
- changed_state.append(layername + ".weight")
-
- if isinstance(layermodel, nn.BatchNorm2d):
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername].cpu().numpy())))
- pruned_layermodel.weight.data = layermodel.weight.data[out_idx].clone()
- pruned_layermodel.bias.data = layermodel.bias.data[out_idx].clone()
- pruned_layermodel.running_mean = layermodel.running_mean[out_idx].clone()
- pruned_layermodel.running_var = layermodel.running_var[out_idx].clone()
- changed_state.append(layername + ".weight")
- changed_state.append(layername + ".bias")
- changed_state.append(layername + ".running_mean")
- changed_state.append(layername + ".running_var")
- changed_state.append(layername + ".num_batches_tracked")
-
- if isinstance(layermodel, nn.Conv2d) and layername.startswith("model.24"):
- former = from_to_map[layername]
- in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
- pruned_layermodel.weight.data = layermodel.weight.data[:, in_idx, :, :]
- pruned_layermodel.bias.data = layermodel.bias.data
- changed_state.append(layername + ".weight")
- changed_state.append(layername + ".bias")
-
- missing = [i for i in pruned_model_state.keys() if i not in changed_state]
-
- pruned_model.eval()
- pruned_model.names = model.names
- # =============================================================================================== #
- torch.save({"model": model}, "weights/pruned_model/orign_model.pt")
- model = pruned_model
- torch.save({"model": model}, "weights/pruned_model/pruned_model.pt")
- model.cuda().eval()
参考:
YOLOv5模型剪枝压缩(2)-YOLOv5模型简介和剪枝层选择_MidasKing的博客-CSDN博客_yolov5剪枝
yolov5模型压缩之模型剪枝_小小小绿叶的博客-CSDN博客_yolov5模型裁剪