• 模型压缩(二)yolov5剪枝


    一、yolov5s

    在yolov5s.ymal文件中,

    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.50  # layer channel multiple。

    通道深度(残差数)及宽度(通道数)相对标准的比例。

    标准的backbone中的C3的number分别为:3、6、9、3

    yolov5s的backbone中的C3的number为:1,、2、3、1  (depth_multiple*number)

    同理网络宽度width_multiple*args[0]。

    head类似。

    1. -------------------------------------0-P1/2----------------------------------------------
    2. model.0.conv.weight --------- torch.Size([32, 3, 6, 6])
    3. model.0.bn.weight --------- torch.Size([32])
    4. model.0.bn.bias --------- torch.Size([32])
    5. -------------------------------------1-P2/4----------------------------------------------
    6. model.1.conv.weight --------- torch.Size([64, 32, 3, 3])
    7. model.1.bn.weight --------- torch.Size([64])
    8. model.1.bn.bias --------- torch.Size([64])
    9. -------------------------------------C3----------------------------------------------
    10. **cv1**
    11. model.2.cv1.conv.weight --------- torch.Size([32, 64, 1, 1])
    12. model.2.cv1.bn.weight --------- torch.Size([32]) ***
    13. model.2.cv1.bn.bias --------- torch.Size([32]) ***
    14. **cv2**
    15. model.2.cv2.conv.weight --------- torch.Size([32, 64, 1, 1])
    16. model.2.cv2.bn.weight --------- torch.Size([32])
    17. model.2.cv2.bn.bias --------- torch.Size([32])
    18. **cv3**
    19. model.2.cv3.conv.weight --------- torch.Size([64, 64, 1, 1])
    20. model.2.cv3.bn.weight --------- torch.Size([64])
    21. model.2.cv3.bn.bias --------- torch.Size([64])
    22. bneck:*1
    23. model.2.m.0.cv1.conv.weight --------- torch.Size([32, 32, 1, 1])
    24. model.2.m.0.cv1.bn.weight --------- torch.Size([32]) ***
    25. model.2.m.0.cv1.bn.bias --------- torch.Size([32]) ***
    26. model.2.m.0.cv2.conv.weight --------- torch.Size([32, 32, 3, 3])
    27. model.2.m.0.cv2.bn.weight --------- torch.Size([32]) ***
    28. model.2.m.0.cv2.bn.bias --------- torch.Size([32]) ***
    29. -------------------------------------3-P3/8----------------------------------------------
    30. model.3.conv.weight --------- torch.Size([128, 64, 3, 3])
    31. model.3.bn.weight --------- torch.Size([128])
    32. model.3.bn.bias --------- torch.Size([128])
    33. -------------------------------------C3----------------------------------------------
    34. **cv1**
    35. model.4.cv1.conv.weight --------- torch.Size([64, 128, 1, 1])
    36. model.4.cv1.bn.weight --------- torch.Size([64]) ***
    37. model.4.cv1.bn.bias --------- torch.Size([64]) ***
    38. **cv2**
    39. model.4.cv2.conv.weight --------- torch.Size([64, 128, 1, 1])
    40. model.4.cv2.bn.weight --------- torch.Size([64])
    41. model.4.cv2.bn.bias --------- torch.Size([64])
    42. **cv3**
    43. model.4.cv3.conv.weight --------- torch.Size([128, 128, 1, 1])
    44. model.4.cv3.bn.weight --------- torch.Size([128])
    45. model.4.cv3.bn.bias --------- torch.Size([128])
    46. **bneck1**
    47. model.4.m.0.cv1.conv.weight --------- torch.Size([64, 64, 1, 1])
    48. model.4.m.0.cv1.bn.weight --------- torch.Size([64])
    49. model.4.m.0.cv1.bn.bias --------- torch.Size([64])
    50. model.4.m.0.cv2.conv.weight --------- torch.Size([64, 64, 3, 3])
    51. model.4.m.0.cv2.bn.weight --------- torch.Size([64])
    52. model.4.m.0.cv2.bn.bias --------- torch.Size([64])
    53. **bneck2**
    54. model.4.m.1.cv1.conv.weight --------- torch.Size([64, 64, 1, 1])
    55. model.4.m.1.cv1.bn.weight --------- torch.Size([64])
    56. model.4.m.1.cv1.bn.bias --------- torch.Size([64])
    57. model.4.m.1.cv2.conv.weight --------- torch.Size([64, 64, 3, 3])
    58. model.4.m.1.cv2.bn.weight --------- torch.Size([64])
    59. model.4.m.1.cv2.bn.bias --------- torch.Size([64])
    60. -------------------------------------5-P4/16----------------------------------------------
    61. model.5.conv.weight --------- torch.Size([256, 128, 3, 3])
    62. model.5.bn.weight --------- torch.Size([256])
    63. model.5.bn.bias --------- torch.Size([256])
    64. 。。。。。。

    二、C3模块

            本文选择yolov5s进行通道剪枝,同样根据BN层稀疏化达到剪枝效果。在yolov5s结构中存在shortcut与cat,主路与支路合并操作。其中shortcut是将前层与后层特征相加,cat是通道连接,而shortcut必须保证前后层的通道数一致才可相加。如果shortcut的前后层参与剪枝,就无法保证前后层的通道数一致,所以剪枝过程中必须剔除参与shortcut操作的卷积层,而cat操作则不影响。

    yolov5s的C3模块的Bottleneck结构中存在shortcut操作。为了避免BN层稀疏后,通道数不匹配,所以所有的残差结构都不剪枝。

    C3

    1. class Bottleneck(nn.Module):
    2. # Standard bottleneck
    3. def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
    4. super().__init__()
    5. c_ = int(c2 * e) # hidden channels
    6. self.cv1 = Conv(c1, c_, 1, 1)
    7. self.cv2 = Conv(c_, c2, 3, 1, g=g)
    8. self.add = shortcut and c1 == c2 #通道相同直接相加。
    9. def forward(self, x):
    10. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
    11. class C3(nn.Module):
    12. # CSP Bottleneck with 3 convolutions
    13. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
    14. super().__init__()
    15. c_ = int(c2 * e) # hidden channels
    16. self.cv1 = Conv(c1, c_, 1, 1)
    17. self.cv2 = Conv(c1, c_, 1, 1)#支路
    18. self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
    19. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
    20. # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
    21. def forward(self, x):
    22. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

     C3结构

    所以C3结构中cv1、cv2参与剪枝。

    三、剪枝操作

    1、稀疏训练

    剔除C3结构中不参与剪枝的卷积层 。

    1. #-------------------------------parse---------------------------
    2. srtmp=opt.sr*(1-0.9*epoch/epochs)
    3. if opt.st:
    4. ignore_bn_list=[]
    5. #记录bottleneck中所有bn层
    6. #C3结构中第一个卷积层与bneck中conv层不剪枝
    7. #即参与add操作有三层conv
    8. for k,m in model.named_modules():
    9. if isinstance(m,Bottleneck):
    10. if m.add:
    11. ignore_bn_list.append(k.split('.',2)[0]+'.cv1.bn')
    12. ignore_bn_list.append(k+ '.cv1.bn')
    13. ignore_bn_list.append(k + '.cv2.bn')
    14. if isinstance(k,nn.BatchNorm2d) and (k not in ignore_bn_list):
    15. m.weight.grad.data.add_(srtmp*torch.sign(m.weight.data))
    16. m.bias.grad.data.add_(opt.sr*10 * torch.sign(m.weight.bias))
    17. print(ignore_bn_list)

    2、剪枝操作

    规整剪枝与正常剪枝。

    正常剪枝

    需剪枝的bn层

    1. bn_layers= {}
    2. ignore_bn_layers=[]
    3. for layer_name,layer_model in model.named_modules():
    4. if isinstance(layer_model,Bottleneck):
    5. if layer_model.add:
    6. ignore_bn_layers.append(layer_name.rsplit('.',2)[0]+'.cv1.bn')#C3中第一个conv
    7. ignore_bn_layers.append(layer_name+'.cv1.bn')#bottleneck中第一个conv
    8. ignore_bn_layers.append(layer_name+'.cv2.bn')#bottleneck中第一个conv
    9. if isinstance(layer_model,nn.BatchNorm2d) and (layer_name not in ignore_bn_layers):
    10. # print(ignore_bn_layers,layer_name)
    11. #未剔除全,主要是每次遍历进入C3中时,cv1没剔除,直到bneck中才开始。
    12. bn_layers[layer_name]=layer_model
    13. # print(ignore_bn_layers,)
    14. # print(len(ignore_bn_layers))
    15. # print(bn_layers)
    16. # print(len(bn_layers))
    17. # exit()
    18. #再次过滤4个C3中的第一个cv层
    19. bn_layers= {k:v for k,v in bn_layers.items() if k not in ignore_bn_layers}
    20. # print(bn_names)
    21. # print(len(bn_names))
    22. # exit()

    统计所有BN层通道数量及各通道的权重值,对权重进行排序,并计算得到索引阈值。

    1. bn_size=[da.weight.data.shape[0] for da in bn_layers.values()]
    2. total_size=sum(bn_size)
    3. print(total_size)
    4. bn_weights=torch.zeros(total_size)
    5. start=0
    6. for i,w in enumerate(bn_layers.values()):
    7. size=w.weight.data.shape[0]
    8. bn_weights[start:(start+size)] = w.weight.data.abs().clone()
    9. start+=bn_size[i]
    10. print(bn_weights,bn_weights.shape)
    11. bn_data,id=torch.sort(bn_weights)
    12. thresh_index=int(percent*total_size)
    13. thresh_weight=bn_data[thresh_index]
    14. print(thresh_index,thresh_weight)
    15. print(f'Gamma value that less than {thresh_weight:.4f} are set to zero!')
    16. print("=" * 94)
    17. print(f"|\t{'layer name':<25}{'|':<10}{'origin channels':<20}{'|':<10}{'remaining channels':<20}|")

    存在问题:

    根据阈值来分隔,可能存在某一BN层所有通道均小于阈值,如果将其过滤掉,会造成层层之间的断开,此时需要做判断进行限制,使得每层最少有一个通道得以保留。

    解决方法:获取每个bn层的权重的最大值,然后在这些最大值中取最小值与设定的阈值进行对比,如果小于阈值,则提示修改。
     

    1. # 避免剪掉所有channel的最高阈值(每个BN层的gamma的最大值的最小值即为阈值上限)
    2. highest_thre = []
    3. for bnlayer in bn_layers.values():
    4. highest_thre.append(bnlayer.weight.data.abs().max().item())
    5. # print("highest_thre:",highest_thre)
    6. highest_thre = min(highest_thre)
    7. # 找到highest_thre对应的下标对应的百分比
    8. percent_limit = (bn_data == highest_thre).nonzero()[0, 0].item() / len(bn_weights)
    9. print(f'Suggested Gamma threshold should be less than {highest_thre:.4f}.')
    10. print(f'The corresponding prune ratio is {percent_limit:.3f}, but you can set higher.')

    重新设置模型文件

    1. pruned_num=0
    2. pruned_yaml = {}
    3. nc = model.model[-1].nc
    4. with open(cfg, encoding='ascii', errors='ignore') as f:
    5. model_yamls = yaml.safe_load(f) # model dict
    6. # # Define model
    7. pruned_yaml["nc"] = model.model[-1].nc
    8. pruned_yaml["depth_multiple"] = model_yamls["depth_multiple"]
    9. pruned_yaml["width_multiple"] = model_yamls["width_multiple"]
    10. pruned_yaml["anchors"] = model_yamls["anchors"]
    11. anchors = model_yamls["anchors"]
    12. pruned_yaml["backbone"] = [
    13. [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    14. [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    15. [-1, 3, C3Pruned, [128]],
    16. [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    17. [-1, 6, C3Pruned, [256]],
    18. [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    19. [-1, 9, C3Pruned, [512]],
    20. [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    21. [-1, 3, C3Pruned, [1024]],
    22. [-1, 1, SPPFPruned, [1024, 5]], # 9
    23. ]
    24. pruned_yaml["head"] = [
    25. [-1, 1, Conv, [512, 1, 1]],
    26. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
    27. [[-1, 6], 1, Concat, [1]], # cat backbone P4
    28. [-1, 3, C3Pruned, [512, False]], # 13
    29. [-1, 1, Conv, [256, 1, 1]],
    30. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
    31. [[-1, 4], 1, Concat, [1]], # cat backbone P3
    32. [-1, 3, C3Pruned, [256, False]], # 17 (P3/8-small)
    33. [-1, 1, Conv, [256, 3, 2]],
    34. [[-1, 14], 1, Concat, [1]], # cat head P4
    35. [-1, 3, C3Pruned, [512, False]], # 20 (P4/16-medium)
    36. [-1, 1, Conv, [512, 3, 2]],
    37. [[-1, 10], 1, Concat, [1]], # cat head P5
    38. [-1, 3, C3Pruned, [1024, False]], # 23 (P5/32-large)
    39. [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
    40. ]

    模型重构:

    1. maskbndict={}
    2. remain_num=0
    3. for name,layer in model.named_modules():
    4. if isinstance(layer,nn.BatchNorm2d):
    5. bn_model=layer
    6. mask=obtain_bn_mask(bn_model,thresh_weight)
    7. # print(mask)
    8. if name in ignore_bn_layers:
    9. # print('-----')
    10. mask=torch.ones(layer.weight.data.size()).cuda()
    11. maskbndict[name]=mask
    12. # print(mask)
    13. remain_num+=int(mask.sum())
    14. bn_model.weight.data.mul_(mask)
    15. bn_model.bias.data.mul_(mask)
    16. print(f"|\t{name:<25}{'|':<10}{bn_model.weight.data.size()[0]:<20}{'|':<10}{int(mask.sum()):<20}|")
    17. assert int(
    18. mask.sum()) > 0, "Current remaining channel must greater than 0!!! please set prune percent to lower thesh, or you can retrain a more sparse model..."
    19. print("=" * 94)
    20. pruned_model=ModelPruned(maskbndict=maskbndict,cfg=pruned_yaml,ch=3).cuda()
    21. for m in pruned_model.modules():
    22. if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
    23. m.inplace = True # pytorch 1.7.0 compatibility
    24. elif type(m) is Conv:
    25. m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
    26. from_to_map=pruned_model.from_to_map
    27. pruned_model_state=pruned_model.state_dict()

    参数拷贝:

    1. #-----------------------------参数拷贝----------------------------
    2. modelstate = model.state_dict()
    3. changed_state=[]
    4. for((layername,layermodel),(pruned_layername,pruned_layermodel)) in zip(model.named_modules(),pruned_model.named_modules()):
    5. if isinstance(layermodel,nn.Conv2d) and not layername.startswith("model.24"):
    6. convname=layername[:-4]+"bn"
    7. if convname in from_to_map.keys():
    8. former=from_to_map[convname]
    9. if isinstance(former,str):
    10. out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
    11. in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
    12. w = layermodel.weight.data[:, in_idx, :, :].clone()
    13. if len(w.shape) == 3: # remain only 1 channel.
    14. w = w.unsqueeze(1)
    15. w = w[out_idx, :, :, :].clone()
    16. pruned_layermodel.weight.data = w.clone()
    17. changed_state.append(layername + ".weight")
    18. if isinstance(former, list):
    19. orignin = [modelstate[i + ".weight"].shape[0] for i in former]
    20. formerin = []
    21. for it in range(len(former)):
    22. name = former[it]
    23. tmp = [i for i in range(maskbndict[name].shape[0]) if maskbndict[name][i] == 1]
    24. if it > 0:
    25. tmp = [k + sum(orignin[:it]) for k in tmp]
    26. formerin.extend(tmp)
    27. out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
    28. w = layermodel.weight.data[out_idx, :, :, :].clone()
    29. pruned_layermodel.weight.data = w[:, formerin, :, :].clone()
    30. changed_state.append(layername + ".weight")
    31. else:
    32. out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
    33. w = layermodel.weight.data[out_idx, :, :, :].clone()
    34. assert len(w.shape) == 4
    35. pruned_layermodel.weight.data = w.clone()
    36. changed_state.append(layername + ".weight")
    37. if isinstance(layermodel, nn.BatchNorm2d):
    38. out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername].cpu().numpy())))
    39. pruned_layermodel.weight.data = layermodel.weight.data[out_idx].clone()
    40. pruned_layermodel.bias.data = layermodel.bias.data[out_idx].clone()
    41. pruned_layermodel.running_mean = layermodel.running_mean[out_idx].clone()
    42. pruned_layermodel.running_var = layermodel.running_var[out_idx].clone()
    43. changed_state.append(layername + ".weight")
    44. changed_state.append(layername + ".bias")
    45. changed_state.append(layername + ".running_mean")
    46. changed_state.append(layername + ".running_var")
    47. changed_state.append(layername + ".num_batches_tracked")
    48. if isinstance(layermodel, nn.Conv2d) and layername.startswith("model.24"):
    49. former = from_to_map[layername]
    50. in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
    51. pruned_layermodel.weight.data = layermodel.weight.data[:, in_idx, :, :]
    52. pruned_layermodel.bias.data = layermodel.bias.data
    53. changed_state.append(layername + ".weight")
    54. changed_state.append(layername + ".bias")
    55. missing = [i for i in pruned_model_state.keys() if i not in changed_state]
    56. pruned_model.eval()
    57. pruned_model.names = model.names
    58. # =============================================================================================== #
    59. torch.save({"model": model}, "weights/pruned_model/orign_model.pt")
    60. model = pruned_model
    61. torch.save({"model": model}, "weights/pruned_model/pruned_model.pt")
    62. model.cuda().eval()

    参考:

    YOLOv5模型剪枝压缩(2)-YOLOv5模型简介和剪枝层选择_MidasKing的博客-CSDN博客_yolov5剪枝

    yolov5模型压缩之模型剪枝_小小小绿叶的博客-CSDN博客_yolov5模型裁剪

    GitHub - midasklr/yolov5prune

  • 相关阅读:
    mysql分组concat() concat_ws() group_concat()
    【刷题】代码随想录算法训练营第二十三天|669、修剪二叉搜索树,108、将有序数组转换为二叉搜索树,538、把二叉搜索树转换为累加树
    【虹科分享】不要使用Windows解决方案来保护Linux服务器
    java计算机毕业设计内容校园热点新闻推送网站源码+mysql数据库+系统+lw文档+部署
    TwinCAT3安装教程
    Linux云服务器如何快速安装宝塔面板?
    十 计算机网络
    驱动 私有数据传参点灯
    MySQL的视图,用户管理,C语言连接
    怎样做一个简易而温馨的原木风居室空间
  • 原文地址:https://blog.csdn.net/m0_37264397/article/details/126292621