多态是C++面向对象三大特性之一,多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。比如Student继承了Person。
Person对象买票全价,Student对象买票半价。
class Animal
{
public:
//Speak函数就是虚函数
//函数前面加上virtual关键字,变成虚函数,
//那么编译器在编译的时候就不能确定函数调用了。
virtual void speak()
{
cout << "动物在说话" << endl;
}
};
class Cat :public Animal
{
public:
void speak()
{
cout << "小猫在说话" << endl;
}
};
class Dog :public Animal
{
public:
void speak()
{
cout << "小狗在说话" << endl;
}
};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编
void DoSpeak(Animal & animal)
{
animal.speak();
}
//
//多态满足条件:
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象
void test01()
{
Cat cat;
DoSpeak(cat);
Dog dog;
DoSpeak(dog);
}
int main() {
test01();
system("pause");
return 0;
}
那么在继承中要构成多态还有两个条件:
基类的指针
或者引用调用虚函数
被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写
多态分为两类
● 静态多态
: 函数重载 和 运算符重载属于静态多态,复用函数名
● 动态多态
: 派生类和虚函数实现运行时多态
静态多态和动态多态区别:
● 静态多态的函数地址早绑定 - 编译阶段确定函数地址
● 动态多态的函数地址晚绑定 - 运行阶段确定函数地址
案例描述: 分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类
多态的优点:
● 代码组织结构清晰
● 可读性强
● 利于前期和后期的扩展以及维护
示例:
//普通实现
class Calculator {
public:
int getResult(string oper)
{
if (oper == "+") {
return m_Num1 + m_Num2;
}
else if (oper == "-") {
return m_Num1 - m_Num2;
}
else if (oper == "*") {
return m_Num1 * m_Num2;
}
//如果要提供新的运算,需要修改源码
}
public:
int m_Num1;
int m_Num2;
};
void test01()
{
//普通实现测试
Calculator c;
c.m_Num1 = 10;
c.m_Num2 = 10;
cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;
cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;
cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
}
//多态实现
//抽象计算器类
//多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
class AbstractCalculator
{
public :
virtual int getResult()
{
return 0;
}
int m_Num1;
int m_Num2;
};
//加法计算器
class AddCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 + m_Num2;
}
};
//减法计算器
class SubCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 - m_Num2;
}
};
//乘法计算器
class MulCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 * m_Num2;
}
};
void test02()
{
//创建加法计算器
AbstractCalculator *abc = new AddCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;
delete abc; //用完了记得销毁
//创建减法计算器
abc = new SubCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;
delete abc;
//创建乘法计算器
abc = new MulCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;
delete abc;
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容因此可以将虚函数改为纯虚函数
纯虚函数语法: virtual 返回值类型 函数名 (参数列表)= 0 ;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点:
● 无法实例化对象
● 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
示例:
class Base
{
public:
//纯虚函数
//类中只要有一个纯虚函数就称为抽象类
//抽象类无法实例化对象
//子类必须重写父类中的纯虚函数,否则也属于抽象类
virtual void func() = 0;
};
class Son :public Base
{
public:
virtual void func()
{
cout << "func调用" << endl;
};
};
void test01()
{
Base * base = NULL;
//base = new Base; // 错误,抽象类无法实例化对象
base = new Son;
base->func();
delete base;//记得销毁
}
int main() {
test01();
system("pause");
return 0;
}
// 这里常考一道笔试题:sizeof(Base)是多少?
class Base
{
public:
virtual void Func1()
{
cout << "Func1()" << endl;
}
private:
int _b = 1;
};
通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr
放在对象的前面(注意有些平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针
(v代表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表。
多态使用时,如果子类中有属性开辟到堆区
,那么父类指针在释放时无法调用到子类的析构代码
解决方式:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
● 可以解决父类指针释放子类对象
● 都需要有具体的函数实现
虚析构和纯虚析构区别:
● 如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0;
类名::~类名(){}
示例:
class Animal {
public:
Animal()
{
cout << "Animal 构造函数调用!" << endl;
}
virtual void Speak() = 0;
//析构函数加上virtual关键字,变成虚析构函数
//virtual ~Animal()
//{
// cout << "Animal虚析构函数调用!" << endl;
//}
virtual ~Animal() = 0;
};
Animal::~Animal()
{
cout << "Animal 纯虚析构函数调用!" << endl;
}
//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。
class Cat : public Animal {
public:
Cat(string name)
{
cout << "Cat构造函数调用!" << endl;
m_Name = new string(name);
}
virtual void Speak()
{
cout << *m_Name << "小猫在说话!" << endl;
}
~Cat()
{
cout << "Cat析构函数调用!" << endl;
if (this->m_Name != NULL) {
delete m_Name;
m_Name = NULL;
}
}
public:
string *m_Name;
};
void test01()
{
Animal *animal = new Cat("Tom");
animal->Speak();
//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏
//怎么解决?给基类增加一个虚析构函数
//虚析构函数就是用来解决通过父类指针释放子类对象
delete animal;
}
int main() {
test01();
system("pause");
return 0;
}
总结:
1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象
2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
3. 拥有纯虚析构函数的类也属于抽象类
案例描述:
电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)
将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商
创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口
测试时组装三台不同的电脑进行工作
示例:
#include
using namespace std;
//抽象CPU类
class CPU
{
public:
//抽象的计算函数
virtual void calculate() = 0;
};
//抽象显卡类
class VideoCard
{
public:
//抽象的显示函数
virtual void display() = 0;
};
//抽象内存条类
class Memory
{
public:
//抽象的存储函数
virtual void storage() = 0;
};
//电脑类
class Computer
{
public:
Computer(CPU * cpu, VideoCard * vc, Memory * mem)
{
m_cpu = cpu;
m_vc = vc;
m_mem = mem;
}
//提供工作的函数
void work()
{
//让零件工作起来,调用接口
m_cpu->calculate();
m_vc->display();
m_mem->storage();
}
//提供析构函数 释放3个电脑零件
~Computer()
{
//释放CPU零件
if (m_cpu != NULL)
{
delete m_cpu;
m_cpu = NULL;
}
//释放显卡零件
if (m_vc != NULL)
{
delete m_vc;
m_vc = NULL;
}
//释放内存条零件
if (m_mem != NULL)
{
delete m_mem;
m_mem = NULL;
}
}
private:
CPU * m_cpu; //CPU的零件指针
VideoCard * m_vc; //显卡零件指针
Memory * m_mem; //内存条零件指针
};
//具体厂商
//Intel厂商
class IntelCPU :public CPU
{
public:
virtual void calculate()
{
cout << "Intel的CPU开始计算了!" << endl;
}
};
class IntelVideoCard :public VideoCard
{
public:
virtual void display()
{
cout << "Intel的显卡开始显示了!" << endl;
}
};
class IntelMemory :public Memory
{
public:
virtual void storage()
{
cout << "Intel的内存条开始存储了!" << endl;
}
};
//Lenovo厂商
class LenovoCPU :public CPU
{
public:
virtual void calculate()
{
cout << "Lenovo的CPU开始计算了!" << endl;
}
};
class LenovoVideoCard :public VideoCard
{
public:
virtual void display()
{
cout << "Lenovo的显卡开始显示了!" << endl;
}
};
class LenovoMemory :public Memory
{
public:
virtual void storage()
{
cout << "Lenovo的内存条开始存储了!" << endl;
}
};
void test01()
{
//第一台电脑零件
CPU * intelCpu = new IntelCPU;
VideoCard * intelCard = new IntelVideoCard;
Memory * intelMem = new IntelMemory;
cout << "第一台电脑开始工作:" << endl;
//创建第一台电脑
Computer * computer1 = new Computer(intelCpu, intelCard, intelMem);
computer1->work();
delete computer1;
cout << "-----------------------" << endl;
cout << "第二台电脑开始工作:" << endl;
//第二台电脑组装
Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);
computer2->work();
delete computer2;
cout << "-----------------------" << endl;
cout << "第三台电脑开始工作:" << endl;
//第三台电脑组装
Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);
computer3->work();
delete computer3;
}
#include
using namespace std;
class A{
public:
A(char *s) { cout<<s<<endl; }
~A(){}
};
class B:virtual public A
{
public:
B(char *s1,char*s2):A(s1) { cout<<s2<<endl; }
};
class C:virtual public A
{
public:
C(char *s1,char*s2):A(s1) { cout<<s2<<endl; }
};
class D:public B,public C
{
public:
D(char *s1,char *s2,char *s3,char *s4):B(s1,s2),C(s1,s3),A(s1)
{ cout<<s4<<endl;}
};
int main() {
D *p=new D("class A","class B","class C","class D");
delete p;
return 0;
}
A:class A class B class C class D B:class D class B class C class A
C:class D class C class B class A D:class A class C class B class D
class Base1 { public: int _b1; };
class Base2 { public: int _b2; };
class Derive : public Base1, public Base2 { public: int _d; };
int main(){
Derive d;
Base1* p1 = &d;
Base2* p2 = &d;
Derive* p3 = &d;
return 0;
}
A:p1 == p2 == p3 B:p1 < p2 < p3 C:p1 == p3 != p2 D:p1 != p2 != p3
10. 以下程序输出结果是什么()
class A
{
public:
virtual void func(int val = 1){ std::cout<<"A->"<< val <<std::endl;}
virtual void test(){ func();}
};
class B : public A
{
public:
void func(int val=0){ std::cout<<"B->"<< val <<std::endl; }
};
int main(int argc ,char* argv[])
{
B*p = new B;
p->test();
return 0;
}
A: A->0 B: B->1 C: A->1 D: B->0 E: 编译出错 F: 以上都不正确
什么是多态?答:参考本节课件内容
什么是重载、重写(覆盖)、重定义(隐藏)?
答:
多态的实现原理?答:参考本节课件内容
inline函数可以是虚函数吗?答:不能,因为inline函数没有地址,无法把地址放到虚函数表中。
静态成员可以是虚函数吗?答:不能,因为静态成员函数没有this指针,使用类型::成员函数的调用方式
无法访问虚函数表,所以静态成员函数无法放进虚函数表。
构造函数可以是虚函数吗?答:不能,因为对象中的虚函数表指针是在构造函数初始化列表阶段才初始
化的。
析构函数可以是虚函数吗?什么场景下析构函数是虚函数?答:可以,并且最好把基类的析构函数定义
成虚函数。参考本节课件内容
对象访问普通函数快还是虚函数更快?答:首先如果是普通对象,是一样快的。如果是指针对象或者是
引用对象,则调用的普通函数快,因为构成多态,运行时调用虚函数需要到虚函数表中去查找。
虚函数表是在什么阶段生成的,存在哪的?答:虚函数表是在编译阶段就生成的,一般情况下存在代码
段(常量区)的。
C++菱形继承的问题?虚继承的原理?