• 8月10日TensorFlow学习笔记——TensorFlow 数据类型、创建、索引与切片、维度变换、前向传播



    前言

    本文为8月10日TensorFlow学习笔记,分为十个章节:

    • Numpy 回归问题实战;
    • 手写数字识别;
    • 数据类型;
    • 创建 Tensor;
    • 常见维度;
    • 索引与切片;
    • 维度变换;
    • Broadcasting;
    • 数学运算;
    • 前向传播。

    一、Numpy 回归问题实战

    1、Step 1:compute loss

    l o s s = ∑ i ( w x i + b − y i ) 2 loss = {\textstyle \sum_{i}} (wx_i + b -y_i)^2 loss=i(wxi+byi)2

    def compute_error_for_line_given_points(b, w, points):
        totalError = 0
        for i in range(0, len(points)):
            x = points[i, 0]
            y = points[i, 1]
            # MSE
            totalError += (y - (w * x + b))**2
        # 平均误差
        return totalError / float(len(points))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    2、Step 2:compute Gradient and update

    w ′ = w − l r ∂ l o s s ∂ w b ′ = b − l r ∂ l o s s ∂ b w' = w - lr\frac{\partial loss}{\partial w}\\ b' = b - lr\frac{\partial loss}{\partial b} w=wlrwlossb=blrbloss

    def step_gradient(b_current, w_current, points, learningRate):
        b_gradient = 0
        w_gradient = 0
        N = float(len(points))
        for i in range(0, len(points)):
            x = points[i, 0]
            y = points[i, 1]
            # dLoss/db = 2(wx+b-y)
            b_gradient += (2/N) * ((w_current * x + b_current) - y)
            # dLoss/dw = 2(wx+b-y)*x
            w_gradient += (2 / N) * x * ((w_current * x + b_current) - y)
        # 更新参数
        new_b = b_current - (learningRate * b_gradient)
        new_w = w_current - (learningRate * w_gradient)
        return [new_b, new_w]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations):
        b = starting_b
        w = starting_w
        # 循环更新
        for i in range(num_iterations):
            b, w = step_gradient(b, w, np.array(points), learning_rate)
        return [b, w]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    二、手写数字识别

    1、Step 1:X and Y

    # Dataloader
    (xs, ys), _ = datasets.mnist.load_data()
    print('datasets: ', xs.shape, ys.shape)
    
    # 将数据类型装换为 Tensor
    xs = tf.convert_to_tensor(xs, dtype=tf.float32) / 255.
    db = tf.data.Dataset.from_tensor_slices((xs, ys))
    
    for step, (x, y) in enumerate(db):
        print(step, x.shape, y.shape)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    2、Step 2:network structure

    # 网络结构
    model = keras.Sequential([
        layers.Dense(512, activation='relu')
        layers.Dense(256, activation='relu')
        layers.Dense(10)])
    
    optimizer = optimizers.SGD(learning_rate=0.001)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    3、Step 3:循环计算 Loss、梯度并更新参数

    o u t = r e l u { r e l u { r e l u [ X @ W 1 + b 1 ] @ W 2 + b 2 } @ W 3 + b 3 } out = relu\{relu\{relu[X@W_1 + b_1] @ W_2 + b_2 \} @ W_3 + b_3 \} out=relu{relu{relu[X@W1+b1]@W2+b2}@W3+b3}

    def train_epoch(epoch):
        # 循环
        for step, (x, y) in enumerate(train_dataset):
            with tf.GradientTape() as tape:
                # [b, 28, 28] ==> [b, 784]
                x = tf.reshape(x, (-1, 28*28))
                # 计算 out
                # [b, 784] ==> [b, 10]
                out = model(x)
                # 计算 Loss
                loss = tf.reduce_sum(tf.square(out - y) / x.shape[0])
    
            # 计算梯度并更新参数
            grads = tape.gradient(loss, model.trainable_variables)
            # w' = w - lr * grad
            optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
            if step % 100 == 0:
                print(epoch, step, loss.numpy())
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    三、数据类型

    • 标量 scalar:1.1;
    • 矢量:[1.1], [1.1, 2.2, …];
    • Matrix:[[1.1, 2.2], [3.3, 4.4]]

    1、tf.constant()

    • int:
    tf.constant(1)
    >>> <tf.Tensor: shape=(), dtype=int32, numpy=1>
    
    • 1
    • 2
    • float:
    tf.constant(1.)
    >>> <tf.Tensor: shape=(), dtype=float32, numpy=1.0>
    
    tf.constant(2., dtype=tf.double)
    >>> <tf.Tensor: shape=(), dtype=float64, numpy=2.0>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • bool:
    tf.constant([True, False])
    >>> <tf.Tensor: shape=(2,), dtype=bool, numpy=array([ True, False])>
    
    • 1
    • 2
    • string:
    tf.constant('hello, world.')
    >>> <tf.Tensor: shape=(), dtype=string, numpy=b'hello, world.'
    
    • 1
    • 2

    2、Tensor Property

    (1)、.device

    with tf.device('cpu'):
        a = tf.constant([1])
        
    with tf.device('gpu'):
        b = tf.range(4)
        
    a.device
    >>> '/job:localhost/replica:0/task:0/device:CPU:0'
    
    b.device
    >>> '/job:localhost/replica:0/task:0/device:GPU:0'
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    (2)、.numpy()

    b
    >>> <tf.Tensor: shape=(4,), dtype=int32, numpy=array([0, 1, 2, 3])>
    
    b.numpy()
    >>> array([0, 1, 2, 3])
    
    • 1
    • 2
    • 3
    • 4
    • 5

    (3)、.ndim

    b.ndim
    >>> 1
    
    • 1
    • 2

    3、Check Tensor Type

    • tf.is_tensor():
    a = tf.constant([1.])
    b = tf.constant('hello, world.')
    c = np.arange(4)
    
    tf.is_tensor(a)
    >>> True
    >
    tf.is_tensor(c)
    >>> False
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • .dtype:
    a.dtype
    >>> tf.float32
    
    b.dtype
    >>> tf.string
    
    • 1
    • 2
    • 3
    • 4
    • 5

    4、Convert

    • tf.convert_to_tensor:
    a = np.arange(5)
    
    a.dtype
    >>> dtype('int32')
    
    aa = tf.convert_to_tensor(a)
    aa
    >>> <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>
    
    aa = tf.convert_to_tensor(a, dtype=tf.int64)
    aa
    >>> <tf.Tensor: shape=(5,), dtype=int64, numpy=array([0, 1, 2, 3, 4], dtype=int64)>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • tf.cast:
    tf.cast(aa, dtype=tf.float32)
    >>> <tf.Tensor: shape=(5,), dtype=float32, numpy=array([0., 1., 2., 3., 4.], dtype=float32)>
    
    aaa = tf.cast(aa, dtype=tf.int32)
    aaa
    >>> <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    5、tf.Variable

    a = tf.range(5)
    b = tf.Variable(a)
    
    b.dtype
    >>> tf.int32
    
    • 1
    • 2
    • 3
    • 4
    • 5

    四、创建 Tensor

    1、From Numpy、List

    • tf.convert_to_tensor():
    tf.convert_to_tensor(np.ones([2, 3]))
    >>> <tf.Tensor: shape=(2, 3), dtype=float64, numpy=
    	array([[1., 1., 1.],
    	       [1., 1., 1.]])>
    
    • 1
    • 2
    • 3
    • 4

    2、tf.zeros & tf.zeros_like / tf.ones

    • tf.zeros / tf.zeros_like:
    tf.zeros([2, 3, 3])
    >>> <tf.Tensor: shape=(2, 3, 3), dtype=float32, numpy=
    	array([[[0., 0., 0.],
    	        [0., 0., 0.],
    	        [0., 0., 0.]],
    	       [[0., 0., 0.],
    	        [0., 0., 0.],
    	        [0., 0., 0.]]], dtype=float32)>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • tf.ones:
    tf.ones([2, 3])
    >>> <tf.Tensor: shape=(2, 3), dtype=float32, numpy=
    	array([[1., 1., 1.],
    	       [1., 1., 1.]], dtype=float32)>
    
    • 1
    • 2
    • 3
    • 4

    3、tf.fill

    tf.fill([2, 2], 9)
    >>> <tf.Tensor: shape=(2, 2), dtype=int32, numpy=
    	array([[9, 9],
    	       [9, 9]])>
    
    • 1
    • 2
    • 3
    • 4

    4、tf.random.normal & tf.random.truncated_normal 初始化

    tf.random.normal([2, 2], mean=1, stddev=1)
    >>> <tf.Tensor: shape=(2, 2), dtype=float32, numpy=
    	array([[-1.7228823 ,  0.5592389 ],
    	       [ 0.958659  ,  0.06300598]], dtype=float32)>
    
    tf.random.truncated_normal([2, 2], mean=0, stddev=1)
    >>> <tf.Tensor: shape=(2, 2), dtype=float32, numpy=
    	array([[-1.1903499 , -1.0997943 ],
    	       [-0.61278445, -1.8260463 ]], dtype=float32)>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    5、tf.uniform

    tf.random.uniform([2, 2], minval=0, maxval=1)
    >>> <tf.Tensor: shape=(2, 2), dtype=float32, numpy=
    	array([[0.691612  , 0.78263617],
    	       [0.272987  , 0.16508114]], dtype=float32)>
    
    • 1
    • 2
    • 3
    • 4

    6、Random Permutation

    idx = tf.range(10)
    idx = tf.random.shuffle(idx)
    
    idx
    >>> <tf.Tensor: shape=(10,), dtype=int32, numpy=array([9, 6, 2, 7, 5, 8, 4, 1, 0, 3])>
    a = tf.random.normal([10, 784])
    b = tf.random.uniform([10], maxval=10, dtype=tf.int32)
    a = tf.gather(a, idx)
    b = tf.gather(b, idx)
    
    a
    >>> <tf.Tensor: shape=(10, 784), dtype=float32, numpy=
    	array([[ 1.0956228 , -0.4414206 , -0.8895049 , ..., -0.46490633,
    	        -0.15867558,  0.127609  ],
    	       [-0.71079516, -0.26290268,  0.3766461 , ...,  0.10106482,
    	         1.015825  ,  0.03456433],
    	       [ 0.35323364, -1.887433  ,  0.6981578 , ...,  1.7753938 ,
    	        -1.6670429 ,  1.6674607 ],
    	       ...,
    	       [ 0.8737698 ,  0.17075352,  0.40575916, ...,  0.49251348,
    	         0.67822474,  2.2669826 ],
    	       [-1.923899  ,  0.71565664, -0.76703817, ...,  0.46844977,
    	        -0.01586642,  1.1873797 ],
    	       [ 1.0158168 ,  0.20684104, -0.5711898 , ..., -0.25193268,
    	        -0.38850918,  0.6844528 ]], dtype=float32)>
    
    b
    >>> <tf.Tensor: shape=(10,), dtype=int32, numpy=array([9, 5, 0, 3, 6, 1, 9, 0, 0, 5])>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    五、常见维度

    1、Loss

    out = tf.random.uniform([4, 10])
    
    out
    >>> <tf.Tensor: shape=(4, 10), dtype=float32, numpy=
    	array([[0.59091175, 0.2158711 , 0.8226553 , 0.7946583 , 0.8934969 ,
    	        0.13021147, 0.3928734 , 0.69753075, 0.05204213, 0.44179153],
    	       [0.34941113, 0.5306299 , 0.72810245, 0.22725523, 0.65103996,
    	        0.4893322 , 0.39717567, 0.6800356 , 0.03700137, 0.01636839],
    	       [0.97450936, 0.1764952 , 0.6414006 , 0.9587896 , 0.2077918 ,
    	        0.6329063 , 0.06751907, 0.6738174 , 0.5489037 , 0.6840067 ],
    	       [0.14027071, 0.19445062, 0.8057821 , 0.79019237, 0.80456376,
    	        0.754022  , 0.74649835, 0.7692772 , 0.7237257 , 0.21629024]],
    	      dtype=float32)>
    
    y = tf.range(4)
    y = tf.one_hot(y, depth=10)
    
    y
    >>> <tf.Tensor: shape=(4, 10), dtype=float32, numpy=
    	array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
    	       [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
    	       [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
    	       [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]], dtype=float32)>
    
    loss = tf.keras.losses.mse(y, out)
    loss
    >>> <tf.Tensor: shape=(4,), dtype=float32, numpy=array([0.31762755, 0.22093074, 0.37001872, 0.368627  ], dtype=float32)>
    
    loss = tf.reduce_mean(loss)
    loss
    >>> <tf.Tensor: shape=(), dtype=float32, numpy=0.319301>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31

    2、Vector

    • Bias:
      [ o u t _ d i m ] [out\_dim] [out_dim]

    3、Matrix

    • Input x:
      [ b , v e c _ d i m ] [b, vec\_dim] [b,vec_dim]
    x = tf.random.normal([4, 784])
    
    x.shape
    >>> TensorShape([4, 784])
    
    • 1
    • 2
    • 3
    • 4

    4、Dim=3

    [ b , s e q _ l e n , w o r d _ d i m ] [b, seq\_len, word\_dim] [b,seq_len,word_dim]

    5、Dim=4

    • Image:
      [ b , h , w , 3 ] [b, h, w, 3] [b,h,w,3]
    
    
    • 1

    6、Dim=5

    • Meta-learning:
      [ t a s k _ b , b , h , w , 3 ] [task\_b, b, h, w, 3] [task_b,b,h,w,3]

    六、索引与切片

    1、[idx]… & [idx, idx, …]

    a = tf.ones([1, 5, 5, 3])
    a
    <tf.Tensor: shape=(1, 5, 5, 3), dtype=float32, numpy=
    >>> array([[[[1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.]],
    	        [[1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.]],
    	        [[1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.]],
    	        [[1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.]],
    	        [[1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.],
    	         [1., 1., 1.]]]], dtype=float32)>
    
    a[0][0]
    >>> <tf.Tensor: shape=(5, 3), dtype=float32, numpy=
    >>> array([[1., 1., 1.],
    	       [1., 1., 1.],
    	       [1., 1., 1.],
    	       [1., 1., 1.],
    	       [1., 1., 1.]], dtype=float32)>
    
    a[0][0][0][2]
    >>> <tf.Tensor: shape=(), dtype=float32, numpy=1.0>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    a = tf.random.normal([4, 28, 28, 3])
    
    a[1].shape
    >>> TensorShape([28, 28, 3])
    
    a[1, 2].shape
    >>> TensorShape([28, 3])
    
    a[1, 2, 3].shape
    >>> TensorShape([3])
    
    a[1, 2, 3, 2].shape
    >>> TensorShape([])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    2、start : end : step

    a = tf.range(10)
    
    a
    >>> <tf.Tensor: shape=(10,), dtype=int32, numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>
    
    a[::-1]
    >>> <tf.Tensor: shape=(10,), dtype=int32, numpy=array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])>
    
    a = tf.random.normal([4, 28, 28, 3])
    
    a[0].shape
    >>> TensorShape([28, 28, 3])
    
    a[0, 1, :, :].shape
    >>> TensorShape([28, 3])
    
    a[:, 0, :, :].shape
    >>> TensorShape([4, 28, 3])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    3、…

    a = tf.random.normal([4, 28, 28, 3])
    
    a[0, ...].shape
    >>> TensorShape([28, 28, 3])
    
    a[0, ..., 2].shape
    >>> TensorShape([28, 28])
    
    a[1, 0, ..., 0].shape
    >>> TensorShape([28])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    4、tf.gather & tf.gather_nd

    Data: [ c l a s s e s , s t u d e n t s , s u b j e c t s ] —— [ 4 , 35 , 8 ] [classes, students, subjects]——[4, 35, 8] [classes,students,subjects]——[4,35,8]

    • tf.gather():
    a = tf.random.normal([4, 35, 8])
    
    tf.gather(a, axis=0, indices=[2, 3]).shape
    >>> TensorShape([2, 35, 8])
    
    tf.gather(a, axis=2, indices=[2, 3, 7]).shape
    >>> TensorShape([4, 35, 3])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • tf.gather_nd():
    tf.gather_nd(a, [0]).shape
    TensorShape([35, 8])
    
    tf.gather_nd(a, [0, 1]).shape
    >>> TensorShape([8])
    
    tf.gather_nd(a, [0, 1, 2]).shape
    >>> TensorShape([])
    
    tf.gather_nd(a, [[0, 1, 2]]).shape
    >>> TensorShape([1])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    5、tf.boolean_mask

    a = tf.random.normal([4, 28, 28, 3])
    
    tf.boolean_mask(a, mask=[True, True, False, False]).shape
    >>> TensorShape([2, 28, 28, 3])
    
    tf.boolean_mask(a, mask=[True, True, False], axis=3).shape
    >>> TensorShape([4, 28, 28, 2])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    七、维度变换

    1、tf.reshape()

    a = tf.random.normal([4, 28, 28, 3])
    
    tf.reshape(a, [4, 784, 3]).shape
    >>> TensorShape([4, 784, 3])
    
    • 1
    • 2
    • 3
    • 4

    2、tf.transpose

    a = tf.random.normal((4, 3, 2, 1))
    
    tf.transpose(a).shape
    >>> TensorShape([1, 2, 3, 4])
    
    • 1
    • 2
    • 3
    • 4

    3、expand_dims

    a = tf.random.normal([4, 35, 8])
    
    tf.expand_dims(a, axis=0).shape
    >>> TensorShape([1, 4, 35, 8])
    
    • 1
    • 2
    • 3
    • 4

    八、Broadcasting

    1

    从最后一个维度开始匹配。

    x = tf.random.normal([4, 32, 32, 3])
    (x+tf.random.normal([4, 1, 1, 1])).shape
    >>> TensorShape([4, 32, 32, 3])
    
    (x+tf.random.normal([1, 4, 1, 1])).shape
    >>> 2022-08-10 19:38:31.261422: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
    	Traceback (most recent call last):
    	tensorflow.python.framework.errors_impl.InvalidArgumentError: required broadcastable shapes [Op:AddV2]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    九、数学运算

    • tf.math.log:
    a = tf.ones([2, 2]) 
    
    a
    >>> <tf.Tensor: shape=(2, 2), dtype=float32, numpy=
    	array([[1., 1.],
    	       [1., 1.]], dtype=float32)>
    
    tf.math.log(a)
    >>> <tf.Tensor: shape=(2, 2), dtype=float32, numpy=
    	array([[0., 0.],
    	       [0., 0.]], dtype=float32)>
    
    tf.math.log(8.) / tf.math.log(2.)
    >>> <tf.Tensor: shape=(), dtype=float32, numpy=3.0>
    
    tf.math.log(100.) / tf.math.log(10.)
    >>> <tf.Tensor: shape=(), dtype=float32, numpy=2.0>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    十、前向传播

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import datasets
    import os
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    # 加载数据集
    # x: [60k, 28, 28]
    # y: [60k]
    (x, y), _ =datasets.mnist.load_data()
    
    # 转换成Tensor
    # x: [0~255] ==> [0, 1]
    x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
    y = tf.convert_to_tensor(y, dtype=tf.int32)
    
    print(x.shape, y.shape, x.dtype, y.dtype)
    print(tf.reduce_min(x), tf.reduce_max(x))
    print(tf.reduce_min(y), tf.reduce_max(y))
    
    train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
    train_iter = iter(train_db)  # 迭代器
    sample = next(train_iter)
    print('batch: ', sample[0].shape, sample[1].shape)
    
    # 权值
    # [b, 784] ==> [b, 512] ==> [b, 128] ==> [b, 10]
    # [dim_in, dim_out], [dim_out]
    w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
    b1 = tf.Variable(tf.zeros([256]))
    w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
    b2 = tf.Variable(tf.zeros([128]))
    w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
    b3 = tf.Variable(tf.zeros([10]))
    
    lr = 1e-3
    
    # 前向运算
    for epoch in range(10): # 对整个数据集迭代
        for step, (x, y) in enumerate(train_db): # 对每个 batch 迭代
            # x: [128, 28, 28]
            # y: [128]
            # [b, 28, 28] ==> [b, 28*28]
            x = tf.reshape(x, [-1, 28*28])
    
            with tf.GradientTape() as tape: # 默认跟踪 tf.Variable
                # x: [b, 28*28]
                # h1 = x @ w1 + b1
                # [b, 784] @ [784, 256] + [256] ==> [b, 256]
                h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
                h1 = tf.nn.relu(h1)
                # [b, 256] ==> [b, 128]
                h2 = h1 @ w2 + b2
                h2 = tf.nn.relu(h2)
                # [b, 128] ==> [b, 10]
                out = h2 @ w3 + b3
    
                # 计算误差
                # out: [b, 10]
                # y: [b] ==> [b, 10]
                y_onehot = tf.one_hot(y, depth=10)
    
                # MSE = mean(sum(y - out)^2)
                # [b, 10]
                loss = tf.square(y_onehot - out)
                # mean: scalar
                loss = tf.reduce_mean(loss)
    
            # 计算梯度
            grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
            # w1 = w1 - lr * w1'
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
            w3.assign_sub(lr * grads[4])
            b3.assign_sub(lr * grads[5])
    
            if step % 100 == 0:
                print(epoch, step, 'loss: ', float(loss))
    
    >>> ……
    >>> 9 400 loss:  0.08220599591732025
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84

  • 相关阅读:
    JPBC的使用
    好用的 JS 脚本
    盘点自动化测试新手要避免的那些坑
    测试覆盖率 之 Cobertura的使用
    LeetCode 算法:全排列 c++
    gitbook在centos上安装
    最简单的el-cascadert省市区三级/二级联动
    Python学习小组课程-课程大纲与Python开发环境安装
    python Django的个人博客
    PhpStorm激活
  • 原文地址:https://blog.csdn.net/Ashen_0nee/article/details/126258934