数据集加载代码:
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X = data.data
y = data.target
为了便于方便查看加载的数据集,我们可以使用jupyter notebook或者spyder编辑器。我们以spyder编辑器为例:
运行加载数据集的代码,右侧会出现变量;
X是输入模型的数据:
y是数据对应的标签:
双击点开变量“data”:
data: 569条数据,每条数据30维,即每条数据30个特征,这30个特征的名称存储在feature_names变量中,分别为[‘mean radius’, ‘mean texture’, ‘mean perimeter’, ‘mean area’, ‘mean smoothness’, ‘mean compactness’, ‘mean concavity’, ‘mean concave points’, ‘mean symmetry’, ‘mean fractal dimension’, ‘radius error’, ‘texture error’, ‘perimeter error’, ‘area error’, ‘smoothness error’, ‘compactness error’, ‘concavity error’, ‘concave points error’, ‘symmetry error’, ‘fractal dimension error’, ‘worst radius’, ‘worst texture’, ‘worst perimeter’, ‘worst area’, ‘worst smoothness’, ‘worst compactness’, ‘worst concavity’, ‘worst concave points’, ‘worst symmetry’, ‘worst fractal dimension’]
数据集加载代码:
from sklearn.datasets import load_iris
data = load_iris()
X = data.data
y = data.target
为了便于方便查看加载的数据集,我们可以使用jupyter notebook或者spyder编辑器。我们以spyder编辑器为例:
X是输入模型的数据:
y是数据对应的标签:
双击点开变量“data”:
data: 150条数据,每条数据4维,即每条数据4个特征,这4个特征的名称存储在feature_names变量中,分别为[‘sepal length (cm)’, ‘sepal width (cm)’, ‘petal length (cm)’, ‘petal width (cm)’]
数据集加载代码:
from sklearn.datasets import load_wine
data = load_wine()
X = data.data
y = data.target
为了方便查看加载的数据集,我们可以使用jupyter notebook或者spyder编辑器。我们以spyder编辑器为例:
运行加载数据集的代码,右侧会出现变量;
X是输入模型的数据:
y是数据对应的标签:
双击点开变量“data”:
data: 178条数据,每条数据13维,即每条数据13个特征,这13个特征的名称存储在feature_names变量中,分别为[‘alcohol’, ‘malic_acid’, ‘ash’, ‘alcalinity_of_ash’, ‘magnesium’, ‘total_phenols’, ‘flavanoids’, ‘nonflavanoid_phenols’, ‘proanthocyanins’, ‘color_intensity’, ‘hue’, ‘od280/od315_of_diluted_wines’, ‘proline’]
数据集加载代码:
from sklearn.datasets import load_digits
data = load_digits()
X = data.data
y = data.target
为了方便查看加载的数据集,我们可以使用jupyter notebook或者spyder编辑器。我们以spyder编辑器为例:
运行加载数据集的代码,右侧会出现变量;
X是输入模型的数据:
y是数据对应的标签:
双击点开变量“data”:
data: 1797条数据,每条数据64维,即每条数据64个特征,这64个特征的名称存储在feature_names变量中,分别为[‘pixel_0_0’, ‘pixel_0_1’, ‘pixel_0_2’, ‘pixel_0_3’, ‘pixel_0_4’, ‘pixel_0_5’, ‘pixel_0_6’, ‘pixel_0_7’, ‘pixel_1_0’, ‘pixel_1_1’, ‘pixel_1_2’, ‘pixel_1_3’, ‘pixel_1_4’, ‘pixel_1_5’, ‘pixel_1_6’, ‘pixel_1_7’, ‘pixel_2_0’, ‘pixel_2_1’, ‘pixel_2_2’, ‘pixel_2_3’, ‘pixel_2_4’, ‘pixel_2_5’, ‘pixel_2_6’, ‘pixel_2_7’, ‘pixel_3_0’, ‘pixel_3_1’, ‘pixel_3_2’, ‘pixel_3_3’, ‘pixel_3_4’, ‘pixel_3_5’, ‘pixel_3_6’, ‘pixel_3_7’, ‘pixel_4_0’, ‘pixel_4_1’, ‘pixel_4_2’, ‘pixel_4_3’, ‘pixel_4_4’, ‘pixel_4_5’, ‘pixel_4_6’, ‘pixel_4_7’, ‘pixel_5_0’, ‘pixel_5_1’, ‘pixel_5_2’, ‘pixel_5_3’, ‘pixel_5_4’, ‘pixel_5_5’, ‘pixel_5_6’, ‘pixel_5_7’, ‘pixel_6_0’, ‘pixel_6_1’, ‘pixel_6_2’, ‘pixel_6_3’, ‘pixel_6_4’, ‘pixel_6_5’, ‘pixel_6_6’, ‘pixel_6_7’, ‘pixel_7_0’, ‘pixel_7_1’, ‘pixel_7_2’, ‘pixel_7_3’, ‘pixel_7_4’, ‘pixel_7_5’, ‘pixel_7_6’, ‘pixel_7_7’]
当然,除了上述介绍的分类数据集,sklearn.datasets还有其他的分类数据集,例如,新闻文本分类数据集(datasets.fetch_20newsgroups、datasets.fetch_20newsgroups_vectorized,二十分类),森林植被类型数据集(datasets.fetch_covtype,七分类),入侵检测数据集(datasets.fetch_kddcup99,二十三分类),人脸数据集分类(datasets.fetch_lfw_pair、datasets.fetch_lfw_people、datasets.fetch_lfw_people)等等。
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
https://blog.csdn.net/weixin_39652646/article/details/109939004