理论部分请看上一篇文章:
简要概述:我们要知道图像中哪个物体在发声如下视频演示:
gif 不能发出声音,大家脑补一下场景中有很多车,只有这辆120在发出声音,所以分割出发出声音的物体。
这是一位歌手时而唱歌,时而弹琴场景,只弹琴时,不分割人体,唱歌时,分割人体。
大家可以通过下载我的百度网盘(附带全部数据和代码),也可以下载官方代码,但不含数据,只能申请得到。
先看train.py
看下面代码的help里面。
- parser.add_argument("--session_name", default="MS3", type=str, help="使用MS3是对数据里的Multi-sources下的数据进行训练,是多声源数据,也就是,可能同时有多个物体发声")
- parser.add_argument("--visual_backbone", default="resnet", type=str,
- help="use resnet50 or pvt-v2 as the visual backbone")
-
- parser.add_argument("--train_batch_size", default=4, type=int)
- parser.add_argument("--val_batch_size", default=1, type=int)
- parser.add_argument("--max_epoches", default=5, type=int)
- parser.add_argument("--lr", default=0.0001, type=float)
- parser.add_argument("--num_workers", default=0, type=int)
- parser.add_argument("--wt_dec", default=5-4, type=float)
-
- parser.add_argument('--masked_av_flag', action='store_true', default=True,
- help='使用作者论文里说的loss: sa/masked_va loss')
- parser.add_argument("--lambda_1", default=0.5, type=float, help='均衡系数weight for balancing l4 loss')
- parser.add_argument("--masked_av_stages", default=[0, 1, 2, 3], nargs='+', type=int,
- help='作者的设置compute sa/masked_va loss in which stages: [0, 1, 2, 3]')
- parser.add_argument('--threshold_flag', action='store_true', default=False,
- help='whether thresholding the generated masks')
- parser.add_argument("--mask_pooling_type", default='avg', type=str, help='the manner to downsample predicted masks')
- parser.add_argument('--norm_fea_flag', action='store_true', default=False, help='音频标准化normalize audio-visual features')
- parser.add_argument('--closer_flag', action='store_true', default=False, help='use closer loss for masked_va loss')
- parser.add_argument('--euclidean_flag', action='store_true', default=False,
- help='use euclidean distance for masked_va loss')
- parser.add_argument('--kl_flag', action='store_true', default=True, help='KL散度 use kl loss for masked_va loss')
-
- parser.add_argument("--load_s4_params", action='store_true', default=False,
- help='use S4 parameters for initilization')
- parser.add_argument("--trained_s4_model_path", type=str, default='', help='pretrained S4 model')
-
- parser.add_argument("--tpavi_stages", default=[0, 1, 2, 3], nargs='+', type=int,
- help='tpavi模块 add tpavi block in which stages: [0, 1, 2, 3]')
- parser.add_argument("--tpavi_vv_flag", action='store_true', default=False, help='视觉自注意visual-visual self-attention')
- parser.add_argument("--tpavi_va_flag", action='store_true', default=True, help='视听交叉注意visual-audio cross-attention')
-
- parser.add_argument("--weights", type=str, default='', help='初始训练预训练模型,可以不写path of trained model')
- parser.add_argument('--log_dir', default='./train_logs', type=str)
大家根据train.sh就可以训练
接下来会根据设置你要的视觉特征提取backbone,语音的默认使用vggish特征提取。
- if (args.visual_backbone).lower() == "resnet":
- from model import ResNet_AVSModel as AVSModel
-
- print('==> Use ResNet50 as the visual backbone...')
- elif (args.visual_backbone).lower() == "pvt":
- from model import PVT_AVSModel as AVSModel
-
- print('==> Use pvt-v2 as the visual backbone...')
- else:
- raise NotImplementedError("only support the resnet50 and pvt-v2")
数据读取部分:
- class MS3Dataset(Dataset):
- """Dataset for multiple sound source segmentation"""
- def __init__(self, split='train'):
- super(MS3Dataset, self).__init__()
- self.split = split
- self.mask_num = 5
- df_all = pd.read_csv(cfg.DATA.ANNO_CSV, sep=',')
- self.df_split = df_all[df_all['split'] == split]
- print("{}/{} videos are used for {}".format(len(self.df_split), len(df_all), self.split))
- self.img_transform = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
- ])
- self.mask_transform = transforms.Compose([
- transforms.ToTensor(),
- ])
-
-
-
- def __getitem__(self, index):
- df_one_video = self.df_split.iloc[index]
- video_name = df_one_video[0]
- img_base_path = os.path.join(cfg.DATA.DIR_IMG, video_name)
- audio_lm_path = os.path.join(cfg.DATA.DIR_AUDIO_LOG_MEL, self.split, video_name + '.pkl')
- mask_base_path = os.path.join(cfg.DATA.DIR_MASK, self.split, video_name)
- audio_log_mel = load_audio_lm(audio_lm_path)
- # audio_lm_tensor = torch.from_numpy(audio_log_mel)
- imgs, masks = [], []
- for img_id in range(1, 6):
- img = load_image_in_PIL_to_Tensor(os.path.join(img_base_path, "%s.mp4_%d.png"%(video_name, img_id)), transform=self.img_transform)
- imgs.append(img)
- for mask_id in range(1, self.mask_num + 1):
- mask = load_image_in_PIL_to_Tensor(os.path.join(mask_base_path, "%s_%d.png"%(video_name, mask_id)), transform=self.mask_transform, mode='P')
- masks.append(mask)
- imgs_tensor = torch.stack(imgs, dim=0)
- masks_tensor = torch.stack(masks, dim=0)
-
- return imgs_tensor, audio_log_mel, masks_tensor, video_name
-
- def __len__(self):
- return len(self.df_split)
可以看到,一次读取5张图,我看了视频,都是5秒的,说明作者一次训练一个视频,每个视频每秒的帧和GT和语音合并训练。
- for n_iter, batch_data in enumerate(train_dataloader):
- imgs, audio, mask, _ = batch_data # [bs, 5, 3, 224, 224], [bs, 5, 1, 96, 64], [bs, 5 or 1, 1, 224, 224]
-
- imgs = imgs.cuda()
- audio = audio.cuda()
- mask = mask.cuda()
- B, frame, C, H, W = imgs.shape
- imgs = imgs.view(B * frame, C, H, W)
- mask_num = 5
- mask = mask.view(B * mask_num, 1, H, W)
- audio = audio.view(-1, audio.shape[2], audio.shape[3], audio.shape[4]) # [B*T, 1, 96, 64]
- with torch.no_grad():
- audio_feature = audio_backbone(audio) # [B*T, 128]
-
- output, v_map_list, a_fea_list = model(imgs, audio_feature) # [bs*5, 1, 224, 224]
- loss, loss_dict = IouSemanticAwareLoss(output, mask, a_fea_list, v_map_list, \
- sa_loss_flag=args.masked_av_flag, lambda_1=args.lambda_1,
- count_stages=args.masked_av_stages, \
- mask_pooling_type=args.mask_pooling_type,
- threshold=args.threshold_flag, norm_fea=args.norm_fea_flag, \
- closer_flag=args.closer_flag, euclidean_flag=args.euclidean_flag,
- kl_flag=args.kl_flag)
-
- avg_meter_total_loss.add({'total_loss': loss.item()})
- avg_meter_iou_loss.add({'iou_loss': loss_dict['iou_loss']})
- avg_meter_sa_loss.add({'sa_loss': loss_dict['sa_loss']})
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- global_step += 1
- if (global_step - 1) % 20 == 0:
- train_log = 'Iter:%5d/%5d, Total_Loss:%.4f, iou_loss:%.4f, sa_loss:%.4f, lr: %.4f' % (
- global_step - 1, max_step, avg_meter_total_loss.pop('total_loss'),
- avg_meter_iou_loss.pop('iou_loss'), avg_meter_sa_loss.pop('sa_loss'),
- optimizer.param_groups[0]['lr'])
可以看到,训练很简单,先load图像5帧view合并在一起,再获取语音特征,送入模型。然后计算损失和Iou得分。
输入模型的数据分为两部分,图像帧【bs*5, 3, 224, 224】,乘以5意思是每个视频有5帧,第二部分是语音帧,维度相似。
- class Pred_endecoder(nn.Module):
- # resnet based encoder decoder
- def __init__(self, channel=256, config=None, tpavi_stages=[], tpavi_vv_flag=False, tpavi_va_flag=True):
- super(Pred_endecoder, self).__init__()
- self.cfg = config
- self.tpavi_stages = tpavi_stages
- self.tpavi_vv_flag = tpavi_vv_flag
- self.tpavi_va_flag = tpavi_va_flag
-
- self.resnet = B2_ResNet()
- self.relu = nn.ReLU(inplace=True)
-
- self.conv4 = self._make_pred_layer(Classifier_Module, [3, 6, 12, 18], [3, 6, 12, 18], channel, 2048)
- self.conv3 = self._make_pred_layer(Classifier_Module, [3, 6, 12, 18], [3, 6, 12, 18], channel, 1024)
- self.conv2 = self._make_pred_layer(Classifier_Module, [3, 6, 12, 18], [3, 6, 12, 18], channel, 512)
- self.conv1 = self._make_pred_layer(Classifier_Module, [3, 6, 12, 18], [3, 6, 12, 18], channel, 256)
-
- self.path4 = FeatureFusionBlock(channel)
- self.path3 = FeatureFusionBlock(channel)
- self.path2 = FeatureFusionBlock(channel)
- self.path1 = FeatureFusionBlock(channel)
-
- for i in self.tpavi_stages:
- setattr(self, f"tpavi_b{i + 1}", TPAVIModule(in_channels=channel, mode='dot'))
- print("==> Build TPAVI block...")
-
- self.output_conv = nn.Sequential(
- nn.Conv2d(channel, 128, kernel_size=3, stride=1, padding=1),
- Interpolate(scale_factor=2, mode="bilinear"),
- nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
- nn.ReLU(True),
- nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
- )
-
- if self.training:
- self.initialize_weights()
-
- def pre_reshape_for_tpavi(self, x):
- # x: [B*5, C, H, W]
- _, C, H, W = x.shape
- x = x.reshape(-1, 5, C, H, W)
- x = x.permute(0, 2, 1, 3, 4).contiguous() # [B, C, T, H, W]
- return x
-
- def post_reshape_for_tpavi(self, x):
- # x: [B, C, T, H, W]
- # return: [B*T, C, H, W]
- _, C, _, H, W = x.shape
- x = x.permute(0, 2, 1, 3, 4) # [B, T, C, H, W]
- x = x.view(-1, C, H, W)
- return x
-
- def tpavi_vv(self, x, stage):
- # x: visual, [B*T, C=256, H, W]
- tpavi_b = getattr(self, f'tpavi_b{stage + 1}')
- x = self.pre_reshape_for_tpavi(x) # [B, C, T, H, W]
- x, _ = tpavi_b(x) # [B, C, T, H, W]
- x = self.post_reshape_for_tpavi(x) # [B*T, C, H, W]
- return x
-
- def tpavi_va(self, x, audio, stage):
- # x: visual, [B*T, C=256, H, W]
- # audio: [B*T, 128]
- # ra_flag: return audio feature list or not
- tpavi_b = getattr(self, f'tpavi_b{stage + 1}')
- audio = audio.view(-1, 5, audio.shape[-1]) # [B, T, 128]
- x = self.pre_reshape_for_tpavi(x) # [B, C, T, H, W]
- x, a = tpavi_b(x, audio) # [B, C, T, H, W], [B, T, C]
- x = self.post_reshape_for_tpavi(x) # [B*T, C, H, W]
- return x, a
-
- def _make_pred_layer(self, block, dilation_series, padding_series, NoLabels, input_channel):
- return block(dilation_series, padding_series, NoLabels, input_channel)
-
- def forward(self, x, audio_feature=None):
- x = self.resnet.conv1(x)
- x = self.resnet.bn1(x)
- x = self.resnet.relu(x)
- x = self.resnet.maxpool(x)
- x1 = self.resnet.layer1(x) # BF x 256 x 56 x 56
- x2 = self.resnet.layer2(x1) # BF x 512 x 28 x 28
- x3 = self.resnet.layer3_1(x2) # BF x 1024 x 14 x 14
- x4 = self.resnet.layer4_1(x3) # BF x 2048 x 7 x 7
- # print(x1.shape, x2.shape, x3.shape, x4.shape)
-
- conv1_feat = self.conv1(x1) # BF x 256 x 56 x 56
- conv2_feat = self.conv2(x2) # BF x 256 x 28 x 28
- conv3_feat = self.conv3(x3) # BF x 256 x 14 x 14
- conv4_feat = self.conv4(x4) # BF x 256 x 7 x 7
- # print(conv1_feat.shape, conv2_feat.shape, conv3_feat.shape, conv4_feat.shape)
-
- feature_map_list = [conv1_feat, conv2_feat, conv3_feat, conv4_feat]
- a_fea_list = [None] * 4
-
- if len(self.tpavi_stages) > 0:
- if (not self.tpavi_vv_flag) and (not self.tpavi_va_flag):
- raise Exception('tpavi_vv_flag and tpavi_va_flag cannot be False at the same time if len(tpavi_stages)>0, \
- tpavi_vv_flag is for video self-attention while tpavi_va_flag indicates the standard version (audio-visual attention)')
- for i in self.tpavi_stages:
- tpavi_count = 0
- conv_feat = torch.zeros_like(feature_map_list[i]).cuda()
- if self.tpavi_vv_flag:
- conv_feat_vv = self.tpavi_vv(feature_map_list[i], stage=i)
- conv_feat += conv_feat_vv
- tpavi_count += 1
- if self.tpavi_va_flag:
- conv_feat_va, a_fea = self.tpavi_va(feature_map_list[i], audio_feature, stage=i)
- conv_feat += conv_feat_va
- tpavi_count += 1
- a_fea_list[i] = a_fea
- conv_feat /= tpavi_count
- feature_map_list[i] = conv_feat # update features of stage-i which conduct TPAVI
-
- conv4_feat = self.path4(feature_map_list[3]) # BF x 256 x 14 x 14
- conv43 = self.path3(conv4_feat, feature_map_list[2]) # BF x 256 x 28 x 28
- conv432 = self.path2(conv43, feature_map_list[1]) # BF x 256 x 56 x 56
- conv4321 = self.path1(conv432, feature_map_list[0]) # BF x 256 x 112 x 112
- # print(conv4_feat.shape, conv43.shape, conv432.shape, conv4321.shape)
-
- pred = self.output_conv(conv4321) # BF x 1 x 224 x 224
- # print(pred.shape)
-
- return pred, feature_map_list, a_fea_list
-
- def initialize_weights(self):
- res50 = models.resnet50(pretrained=False)
- resnet50_dict = torch.load(self.cfg.TRAIN.PRETRAINED_RESNET50_PATH)
- res50.load_state_dict(resnet50_dict)
- pretrained_dict = res50.state_dict()
- # print(pretrained_dict.keys())
- all_params = {}
- for k, v in self.resnet.state_dict().items():
- if k in pretrained_dict.keys():
- v = pretrained_dict[k]
- all_params[k] = v
- elif '_1' in k:
- name = k.split('_1')[0] + k.split('_1')[1]
- v = pretrained_dict[name]
- all_params[k] = v
- elif '_2' in k:
- name = k.split('_2')[0] + k.split('_2')[1]
- v = pretrained_dict[name]
- all_params[k] = v
- assert len(all_params.keys()) == len(self.resnet.state_dict().keys())
- self.resnet.load_state_dict(all_params)
- print(f'==> Load pretrained ResNet50 parameters from {self.cfg.TRAIN.PRETRAINED_RESNET50_PATH}')
网络部分很简单,模型的定义没什么亮点,我们看forward里面的代码:
- def forward(self, x, audio_feature=None): # 输入图像帧和音频梅尔图经过vggish 的特征图。
- x = self.resnet.conv1(x)
- x = self.resnet.bn1(x)
- x = self.resnet.relu(x)
- x = self.resnet.maxpool(x)
- x1 = self.resnet.layer1(x) # BF x 256 x 56 x 56
- x2 = self.resnet.layer2(x1) # BF x 512 x 28 x 28
- x3 = self.resnet.layer3_1(x2) # BF x 1024 x 14 x 14
- x4 = self.resnet.layer4_1(x3) # BF x 2048 x 7 x 7 先进行resnet特征提取
- # print(x1.shape, x2.shape, x3.shape, x4.shape)
-
- conv1_feat = self.conv1(x1) # BF x 256 x 56 x 56 维度转换一下
- conv2_feat = self.conv2(x2) # BF x 256 x 28 x 28
- conv3_feat = self.conv3(x3) # BF x 256 x 14 x 14
- conv4_feat = self.conv4(x4) # BF x 256 x 7 x 7
- # print(conv1_feat.shape, conv2_feat.shape, conv3_feat.shape, conv4_feat.shape)
-
- feature_map_list = [conv1_feat, conv2_feat, conv3_feat, conv4_feat]
- a_fea_list = [None] * 4
-
- if len(self.tpavi_stages) > 0: # 做几次tpavi模块,论文中是4次
- if (not self.tpavi_vv_flag) and (not self.tpavi_va_flag):
- raise Exception('tpavi_vv_flag and tpavi_va_flag cannot be False at the same time if len(tpavi_stages)>0, \
- tpavi_vv_flag is for video self-attention while tpavi_va_flag indicates the standard version (audio-visual attention)')
- for i in self.tpavi_stages:
- tpavi_count = 0
- conv_feat = torch.zeros_like(feature_map_list[i]).cuda()
- if self.tpavi_vv_flag:
- conv_feat_vv = self.tpavi_vv(feature_map_list[i], stage=i)
- conv_feat += conv_feat_vv
- tpavi_count += 1
- if self.tpavi_va_flag:
- # tpavi模块
- conv_feat_va, a_fea = self.tpavi_va(feature_map_list[i], audio_feature, stage=i)
- conv_feat += conv_feat_va
- tpavi_count += 1
- a_fea_list[i] = a_fea
- conv_feat /= tpavi_count
- feature_map_list[i] = conv_feat # update features of stage-i which conduct TPAVI
-
- conv4_feat = self.path4(feature_map_list[3]) # BF x 256 x 14 x 14 # 解码
- conv43 = self.path3(conv4_feat, feature_map_list[2]) # BF x 256 x 28 x 28
- conv432 = self.path2(conv43, feature_map_list[1]) # BF x 256 x 56 x 56
- conv4321 = self.path1(conv432, feature_map_list[0]) # BF x 256 x 112 x 112
- # print(conv4_feat.shape, conv43.shape, conv432.shape, conv4321.shape)
-
- pred = self.output_conv(conv4321) # BF x 1 x 224 x 224
- # print(pred.shape)
-
- return pred, feature_map_list, a_fea_list
可以看到要经过一个TPAVI模块,是蛮复杂的模块:
- class TPAVIModule(nn.Module):
- def __init__(self, in_channels, inter_channels=None, mode='dot',
- dimension=3, bn_layer=True):
- """
- args:
- in_channels: original channel size (1024 in the paper)
- inter_channels: channel size inside the block if not specifed reduced to half (512 in the paper)
- mode: supports Gaussian, Embedded Gaussian, Dot Product, and Concatenation
- dimension: can be 1 (temporal), 2 (spatial), 3 (spatiotemporal)
- bn_layer: whether to add batch norm
- """
- super(TPAVIModule, self).__init__()
-
- assert dimension in [1, 2, 3]
-
- if mode not in ['gaussian', 'embedded', 'dot', 'concatenate']:
- raise ValueError('`mode` must be one of `gaussian`, `embedded`, `dot` or `concatenate`')
-
- self.mode = mode
- self.dimension = dimension
-
- self.in_channels = in_channels
- self.inter_channels = inter_channels
-
- # the channel size is reduced to half inside the block
- if self.inter_channels is None:
- self.inter_channels = in_channels // 2
- if self.inter_channels == 0:
- self.inter_channels = 1
-
- ## add align channel
- self.align_channel = nn.Linear(128, in_channels)
- self.norm_layer=nn.LayerNorm(in_channels)
-
- # assign appropriate convolutional, max pool, and batch norm layers for different dimensions
- if dimension == 3:
- conv_nd = nn.Conv3d
- max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
- bn = nn.BatchNorm3d
- elif dimension == 2:
- conv_nd = nn.Conv2d
- max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
- bn = nn.BatchNorm2d
- else:
- conv_nd = nn.Conv1d
- max_pool_layer = nn.MaxPool1d(kernel_size=(2))
- bn = nn.BatchNorm1d
-
- # function g in the paper which goes through conv. with kernel size 1
- self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1)
-
- if bn_layer:
- self.W_z = nn.Sequential(
- conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1),
- bn(self.in_channels)
- )
- nn.init.constant_(self.W_z[1].weight, 0)
- nn.init.constant_(self.W_z[1].bias, 0)
- else:
- self.W_z = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1)
-
- nn.init.constant_(self.W_z.weight, 0)
- nn.init.constant_(self.W_z.bias, 0)
-
- # define theta and phi for all operations except gaussian
- if self.mode == "embedded" or self.mode == "dot" or self.mode == "concatenate":
- self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1)
- self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1)
-
- if self.mode == "concatenate":
- self.W_f = nn.Sequential(
- nn.Conv2d(in_channels=self.inter_channels * 2, out_channels=1, kernel_size=1),
- nn.ReLU()
- )
-
-
- def forward(self, x, audio=None):
- """
- args:
- x: (N, C, T, H, W) for dimension=3; (N, C, H, W) for dimension 2; (N, C, T) for dimension 1
- audio: (N, T, C)
- """
-
- audio_temp = 0
- batch_size, C = x.size(0), x.size(1)
- if audio is not None:
- # print('==> audio.shape', audio.shape)
- H, W = x.shape[-2], x.shape[-1]
- audio_temp = self.align_channel(audio) # [bs, T, C]
- audio = audio_temp.permute(0, 2, 1) # [bs, C, T]
- audio = audio.unsqueeze(-1).unsqueeze(-1) # [bs, C, T, 1, 1]
- audio = audio.repeat(1, 1, 1, H, W) # [bs, C, T, H, W]
- else:
- audio = x
-
- # (N, C, THW)
- g_x = self.g(x).view(batch_size, self.inter_channels, -1) # [bs, C, THW]
- # print('g_x.shape', g_x.shape)
- # g_x = x.view(batch_size, C, -1) # [bs, C, THW]
- g_x = g_x.permute(0, 2, 1) # [bs, THW, C]
-
- if self.mode == "gaussian":
- theta_x = x.view(batch_size, self.in_channels, -1)
- phi_x = audio.view(batch_size, self.in_channels, -1)
- theta_x = theta_x.permute(0, 2, 1)
- f = torch.matmul(theta_x, phi_x)
-
- elif self.mode == "embedded" or self.mode == "dot":
- theta_x = self.theta(x).view(batch_size, self.inter_channels, -1) # [bs, C', THW]
- phi_x = self.phi(audio).view(batch_size, self.inter_channels, -1) # [bs, C', THW]
- theta_x = theta_x.permute(0, 2, 1) # [bs, THW, C']
- f = torch.matmul(theta_x, phi_x) # [bs, THW, THW]
-
- elif self.mode == "concatenate":
- theta_x = self.theta(x).view(batch_size, self.inter_channels, -1, 1)
- phi_x = self.phi(audio).view(batch_size, self.inter_channels, 1, -1)
-
- h = theta_x.size(2)
- w = phi_x.size(3)
- theta_x = theta_x.repeat(1, 1, 1, w)
- phi_x = phi_x.repeat(1, 1, h, 1)
-
- concat = torch.cat([theta_x, phi_x], dim=1)
- f = self.W_f(concat)
- f = f.view(f.size(0), f.size(2), f.size(3))
-
- if self.mode == "gaussian" or self.mode == "embedded":
- f_div_C = F.softmax(f, dim=-1)
- elif self.mode == "dot" or self.mode == "concatenate":
- N = f.size(-1) # number of position in x
- f_div_C = f / N # [bs, THW, THW]
-
- y = torch.matmul(f_div_C, g_x) # [bs, THW, C]
-
- # contiguous here just allocates contiguous chunk of memory
- y = y.permute(0, 2, 1).contiguous() # [bs, C, THW]
- y = y.view(batch_size, self.inter_channels, *x.size()[2:]) # [bs, C', T, H, W]
-
- W_y = self.W_z(y) # [bs, C, T, H, W]
- # residual connection
- z = W_y + x # # [bs, C, T, H, W]
-
- # add LayerNorm
- z = z.permute(0, 2, 3, 4, 1) # [bs, T, H, W, C]
- z = self.norm_layer(z)
- z = z.permute(0, 4, 1, 2, 3) # [bs, C, T, H, W]
-
- return z, audio_temp
代码看着复杂,其实是作者做了很多的模块选择以及代码的通道转换,实际最后的操作就是几个1* 1 *1 3D卷积,咱不用想也知道,3d卷积来做时序的特征提取。然后做一些累乘累加操作。
- if dimension == 3:
- conv_nd = nn.Conv3d
- max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
- bn = nn.BatchNorm3d
- elif dimension == 2:
- conv_nd = nn.Conv2d
- max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
- bn = nn.BatchNorm2d
- else:
- conv_nd = nn.Conv1d
- max_pool_layer = nn.MaxPool1d(kernel_size=(2))
- bn = nn.BatchNorm1d
最后经过几个解码器,将特征图转为一维度:
- conv4_feat = self.path4(feature_map_list[3]) # BF x 256 x 14 x 14
- conv43 = self.path3(conv4_feat, feature_map_list[2]) # BF x 256 x 28 x 28
- conv432 = self.path2(conv43, feature_map_list[1]) # BF x 256 x 56 x 56
- conv4321 = self.path1(conv432, feature_map_list[0]) # BF x 256 x 112 x 112
- # print(conv4_feat.shape, conv43.shape, conv432.shape, conv4321.shape)
-
- pred = self.output_conv(conv4321) # BF x 1 x 224 x 224
可以看到【BF x 1 x 224 x 224】这个1维度的变化,就是网络的一个回归预测部分。最后输出的bs *frame 张1 * 224 *224 的图,就是我们最后输出的图(经过argmax等操作后显示成0,1分类),就变成了预测的mask图,
大家可以看我的预测图:
先看看ms3_meta_data.csv 的数据
可以看到,一共有三份数据:训练、验证和测试集,我们训练好模型后,可以使用test.py 进行测试,测试效果会放在test_log文件夹。会去测试,test文件夹里的数据。运行测试代码,改一下训练好的模型路径就可以看到结果。
测试某个视频
点开avsbench_data/det/det的raw_videos/里面放你想测试的videos,建议5s,因为要切5帧,除非你改代码。
然后运行preprocess_scripts/preprocess_ms3.py,这是为了生成语音的梅尔图,和切帧,会保存到raw_videos同级。
接着运行detect.py(在train.py 同级)就可以针对你的视频,推理了。
实时检测,这个代码我还在写,稍等。
代码所有的链接(本地文件不能上传,只能提供原始github):https://github.com/OpenNLPLab/AVSBench
近期我会录制视频,过一遍原理和代码和训练推理,大家关注一下~