摘要:本文中,我们将介绍通过代码移动(插入)的方式消除冗余计算的一个典型方法。
本文分享自华为云社区《编译器优化那些事儿(3):Lazy Code Motion》,作者:毕昇小助手。
本文中,我们将介绍通过代码移动(插入)的方式消除冗余计算的一个典型方法。
下图给出的简要程序流图中, ①是我们想要优化的代码,②和③是优化后的代码,让我们先思考下面几个问题:
③ 更好一点,相比 ② 寄存器生存周期更短
这里不会引入冗余的计算,也没有改变程序行为。但如果 p 是下文介绍的 非预期的 点,我们就需要使用在 临界边上增加合成块的方式避免这个问题了。
这是本文要介绍的内容,我们会在下面算法章节引入四个定义,为程序在各个点上打上标签,通过这些点的集合之间的运算,得到插入点的集合。
介绍算法之前,我们来看三个在写应用层代码时可能会遇到的问题。
答案已在图中给出:
有的,这也是下面算法中要寻找的情景,左边的路径消除了一次冗余计算,右边为了保持程序正确性插入了一个计算,但并没有引入冗余的计算,所以总体是有优化的.
不能,因为插入不能改变程序的行为: 这里 t=b+c 可能难以看出问题,但如果表达式换成 b/c (c==0) 或 b^c 就能明显的看到造成了运行问题或性能问题。
解决方法:可在 临界边(Critical Edge)上增加 合成块(Synthetic Block)。
定义:源基本块有多个后继,目标基本块有多个前驱,连接它们的边就叫临界边(Critical Edge)。
临界边如上图红色部分所示。
打破临界边(Critical Edge)的办法: 增加合成块(Synthetic Block)
步骤:
上图中我们插入了两个合成块,其中一个是多余的,但不用担心,我们可以在最后消除它。
上文中,我们介绍了一个可以放心插入表达式而不会引入安全问题的方法,下面我们将正式介绍导语中提到的算法。
部分冗余消除算法要尽可能延迟计算, 这也是标题中 lazy 的含义。
程序流程图如下:
算法步骤:
我们会以下图为例,说明整个计算过程。根据以往的经验,下面给出的几个公式,必须结合图例去理解,文字无法阐述清楚准确定义。
Anticipated:An expression is said to be anticipated at program point if all paths leading from eventually computes (from the values of ’s operands that are available at ).
预期表达式(Anticipated)的分析方向为后向(backword)。
图示说明:
1 表示该点是可预期的(Anticipated),0 表示不是。 该算法的方向是 后向(backword)的,对应到图中,我们要从 p1 开始判断:对于表达式 b+c 而言,p1 是非预期的,因为到该点为止,没有 b+c 的计算,继续往上,看到了 b+c 的计算,所以 p2 点是可预期的(Anticipated),这情况一直持续到 p3,到 p4,由于该点看到了 b=1,b 被重新定义了,就是公式里被 Kill 的表达式,所以 p4 点不是可预期的(Anticipated)点。
Will-be-available:An expression is said to be will-be-available at program point if it is anticipated and not subsequently killed along all paths reaching .
将可用的表达式(Will-be-Available)的分析方向为前向(forward)。
图中绿色的 1 表示表达式 b+c 该点是将可用的(Will-be-Available),0 表示不是。该算法方向是前向的,就是分析时,我们从 p4 开始看,根据公式的定义,该点不是可预期的(Anticipated),也没有计算表达式 b+c,所以该点不是将可用的(Will-be-Available),p3 虽然是可预期的(Anticipated),但因为 b=1 ,所以 p3 点对表达式 b+c 来说是 Ekillp ,所以该点仍不是将可用的,p5 点是可预期的(Anticipated),且该点没有 kill 的操作,该点是将可用的(Will-be-Available),后续的点类似。
接下来可以通过以下公式进行最早插入点的计算:
根据公式,最早可插入的点的集合是 可预期点的(Anticipated)集合(图中红色1部分) 减去 将可用点的(Will-be-Available)集合,得到图中标记的点。
目前为止我们已经找了一种通用的消除重复计算的方法,就是在上图中标注 Earliest 的点插入表达式 t=b+c, 然后在后面所有用到 b+c 的地方替换成 t,但这样做会带来一个问题,就是寄存器的生存期会很长。通过下一小节引入的定义,我们可以解决这个寄存器生存期的问题。
An expression is said to be postponable at program point if all paths leading to have seen earliest placement of but not a subsequent use.
延缓表达式(Postponable)的分析方向为前向(forward)。
延迟创建冗余计算表达式可以减少寄存器压力:从公式看,Postponable点一定是在 Earliest 点的后面的,更接近表达式要被替换的地方,就是说,从表达式第一次被计算的点(结果在寄存器)到该结果被复用的点距离更近。
对于该图的讲解,可以参考 YouTube2 中的讲解。
接下来可以通过以下公式进行最晚插入点(Latest)的计算:
这里插入的点(图中黄色方块)是增加的合成块,是出于安全性的考虑。
An expression is said to be used at program point if there exists a path leading from that uses the expression before the operands are reevaluated.
已用表达式(Used Expressions)的分析方向为后向(backword)。
如图所示,从下往上看,未使用的点标记为0,直到使用的地方被标记为1。
引入这个定义主要是为了消除当前块之外未使用的临时变量赋值,计算方式: Used.out: sets of used (live) expressions at exit of b.
对所有的基本块/表达式 b,如果表达式属于最晚插入点的集合与已用点位置的交集,
则在基本块b的开头,先创建 t = a + b,然后把所有的 x+y 替换为 t。
目前为止算法的介绍部分就已经全部讲完了,但是有些定义还是比较模糊,需要结合代码才能讲清楚, 大家可以翻看LLVM 源码3中关于该代码的具体实现: MachineCSE 类与 NaryReassociatePass 等类的实现。
1. https://dl.acm.org/doi/abs/10.1145/143095.143136
2. https://www.youtube.com/watch?v=3s4oST3oZzQ&t=20s
3. https://github.com/llvm/llvm-project