• 谱半径学习


    谱半径

    λ 1 , ⋯   , λ n \lambda_1,\cdots, \lambda_n λ1,,λn A ∈ C n × n \mathbf{A}\in\mathbb{C}^{n\times n} ACn×n的特征值,则谱半径定义为
    ρ ( A ) = max ⁡ { ∣ λ 1 ∣ , ⋯   , ∣ λ n ∣ } \rho\left(\mathbf{A}\right)=\max\left\{\left|\lambda_1\right|,\cdots, \left|\lambda_n\right|\right\} ρ(A)=max{λ1,,λn}

    注意 ∥ A v ∥ ≤ ρ ( A ) ∥ v ∥ \|\mathbf{A}\mathbf{v}\|\le\rho\left(\mathbf{A}\right)\|\mathbf{v}\| Avρ(A)v不一定成立
    C r = ( 0 1 r r 0 ) \mathbf{C}_r=

    (01rr0)" role="presentation" style="position: relative;">(01rr0)
    Cr=(0rr10)
    其中 r > 1 r>1 r>1
    C r \mathbf{C}_r Cr的特征值为 ± 1 \pm 1 ±1
    C r e 1 = r e 2 \mathbf{C}_r\mathbf{e}_1=r\mathbf{e}_2 Cre1=re2
    ∥ C r e 1 ∥ = r > 1 = ρ ( C r ) ∥ e 1 ∥ \|\mathbf{C}_r\mathbf{e}_1\|=r>1=\rho\left(\mathbf{C}_r\right)\|\mathbf{e}_1\| Cre1=r>1=ρ(Cr)e1
    如果 A \mathbf{A} A是Hermitian矩阵的话则 ∥ A v ∥ ≤ ρ ( A ) ∥ v ∥ \|\mathbf{A}\mathbf{v}\|\le\rho\left(\mathbf{A}\right)\|\mathbf{v}\| Avρ(A)v

    性质

    性质1

    ρ ( A ) ≤ ∥ A ∥ \rho\left(\mathbf{A}\right)\le \|\mathbf{A}\| ρ(A)A
    其中 ∥ ⋅ ∥ \|\cdot\| 是任意算子范数

    证明:
    λ \lambda λ A \mathbf{A} A的特征值, x \mathbf{x} x是对应的特征向量
    ∣ λ ∣ ∥ x ∥ = ∥ λ x ∥ = ∥ A x ∥ ≤ ∥ A ∥   ∥ x ∥ ⇒ ρ ( A ) ≤ ∥ A ∥ \left|\lambda\right|\|\mathbf{x}\|=\|\lambda\mathbf{x}\|=\|\mathbf{Ax}\|\le\|\mathbf{A}\|\ \|\mathbf{x}\|\Rightarrow \rho\left(\mathbf{A}\right)\le \|\mathbf{A}\| λx=λx=AxA xρ(A)A

    性质2

    对于 ϵ > 0 \epsilon>0 ϵ>0,存在某种矩阵范数 ∥ ⋅ ∥ \|\cdot\| ,使得
    ∥ A ∥ ≤ ρ ( A ) + ϵ \|\mathbf{A}\|\le\rho\left(\mathbf{A}\right)+\epsilon Aρ(A)+ϵ

    证明:
    由若尔当分解定理
    A = S ( J n 1 ( λ 1 ) 0 ⋯ 0 0 J n 2 ( λ 2 ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 J n k ( λ k ) ) S − 1 \mathbf{A}=\mathbf{S}

    (Jn1(λ1)000Jn2(λ2)000Jnk(λk))" role="presentation" style="position: relative;">(Jn1(λ1)000Jn2(λ2)000Jnk(λk))
    \mathbf{S}^{-1} A=S Jn1(λ1)000Jn2(λ2)000Jnk(λk) S1
    其中 S \mathbf{S} S是可逆矩阵, λ 1 , ⋯   , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A \mathbf{A} A的特征值, n 1 + ⋯ + n k = n n_1+\cdots+n_k=n n1++nk=n


    D ( η ) = ( D n 1 ( η ) 0 ⋯ 0 0 D n 2 ( η ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 D n k ( η ) ) \mathbf{D}\left(\eta\right)=

    (Dn1(η)000Dn2(η)000Dnk(η))" role="presentation" style="position: relative;">(Dn1(η)000Dn2(η)000Dnk(η))
    D(η)= Dn1(η)000Dn2(η)000Dnk(η)
    其中
    D m ( η ) = ( η 0 ⋯ 0 0 η 2 ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 η m ) \mathbf{D}_m\left(\eta\right)=
    (η000η2000ηm)" role="presentation" style="position: relative;">(η000η2000ηm)
    Dm(η)= η000η2000ηm

    D ( 1 ϵ ) S − 1 A S D ( ϵ ) = ( B n 1 ( λ 1 , ϵ ) 0 ⋯ 0 0 B n 2 ( λ 2 , ϵ ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 B n k ( λ k , ϵ ) ) \mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)=

    (Bn1(λ1,ϵ)000Bn2(λ2,ϵ)000Bnk(λk,ϵ))" role="presentation" style="position: relative;">(Bn1(λ1,ϵ)000Bn2(λ2,ϵ)000Bnk(λk,ϵ))
    D(ϵ1)S1ASD(ϵ)= Bn1(λ1,ϵ)000Bn2(λ2,ϵ)000Bnk(λk,ϵ)
    其中
    B m ( λ , ϵ ) = D m ( 1 ϵ ) J m ( λ ) D m ( ϵ ) = ( λ ϵ 0 ⋯ 0 0 λ ϵ 0 ⋮ 0 ⋱ ⋱ ⋱ 0 ⋮ ⋱ ⋱ λ ϵ 0 ⋯ 0 0 λ ) \mathbf{B}_{m}\left(\lambda,\epsilon\right)=\mathbf{D}_m\left(\frac{1}{\epsilon}\right)\mathbf{J}_m\left(\lambda\right)\mathbf{D}_m\left(\epsilon\right)=
    (λϵ000λϵ000λϵ000λ)" role="presentation" style="position: relative;">(λϵ000λϵ000λϵ000λ)
    Bm(λ,ϵ)=Dm(ϵ1)Jm(λ)Dm(ϵ)= λ000ϵλ0ϵ00λ000ϵλ

    定义矩阵范数
    ∥ A ∥ = ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) ∥ 1 \|\mathbf{A}\|=\|\mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{S}^{-1}\mathbf{A}\mathbf{S}\mathbf{D}\left(\epsilon\right)\|_1 A=D(ϵ1)S1ASD(ϵ)1
    接下来验证 ∥ ⋅ ∥ \|\cdot\| 是矩阵范数

    容易验证非负性和正齐次性

    三角不等式:
    ∥ A + B ∥ = ∥ D ( 1 ϵ ) S − 1 ( A + B ) S D ( ϵ ) ∥ 1 = ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) + D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 ≤ ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) ∥ 1 + ∥ D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 = ∥ A ∥ + ∥ B ∥

    A+B=D(1ϵ)S1(A+B)SD(ϵ)1=D(1ϵ)S1ASD(ϵ)+D(1ϵ)S1BSD(ϵ)1D(1ϵ)S1ASD(ϵ)1+D(1ϵ)S1BSD(ϵ)1=A+B" role="presentation" style="position: relative;">A+B=D(1ϵ)S1(A+B)SD(ϵ)1=D(1ϵ)S1ASD(ϵ)+D(1ϵ)S1BSD(ϵ)1D(1ϵ)S1ASD(ϵ)1+D(1ϵ)S1BSD(ϵ)1=A+B
    A+B=D(ϵ1)S1(A+B)SD(ϵ)1=D(ϵ1)S1ASD(ϵ)+D(ϵ1)S1BSD(ϵ)1D(ϵ1)S1ASD(ϵ)1+D(ϵ1)S1BSD(ϵ)1=A+B

    次乘性:

    因为 D ( 1 ϵ ) D ( ϵ ) = I \mathbf{D}\left(\frac{1}{\epsilon}\right)\mathbf{D}\left(\epsilon\right)=\mathbf{I} D(ϵ1)D(ϵ)=I
    ∥ A B ∥ = ∥ D ( 1 ϵ ) S − 1 A B S D ( ϵ ) ∥ 1 = ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 ≤ ∥ D ( 1 ϵ ) S − 1 A S D ( ϵ ) ∥ 1 ∥ D ( 1 ϵ ) S − 1 B S D ( ϵ ) ∥ 1 = ∥ A ∥ ∥ B ∥

    AB=D(1ϵ)S1ABSD(ϵ)1=D(1ϵ)S1ASD(ϵ)D(1ϵ)S1BSD(ϵ)1D(1ϵ)S1ASD(ϵ)1D(1ϵ)S1BSD(ϵ)1=AB" role="presentation" style="position: relative;">AB=D(1ϵ)S1ABSD(ϵ)1=D(1ϵ)S1ASD(ϵ)D(1ϵ)S1BSD(ϵ)1D(1ϵ)S1ASD(ϵ)1D(1ϵ)S1BSD(ϵ)1=AB
    AB=D(ϵ1)S1ABSD(ϵ)1=D(ϵ1)S1ASD(ϵ)D(ϵ1)S1BSD(ϵ)1D(ϵ1)S1ASD(ϵ)1D(ϵ1)S1BSD(ϵ)1=A∥∥B
    所以 ∥ ⋅ ∥ \|\cdot\| 是矩阵范数

    于是
    ∥ A ∥ = max ⁡ i ∈ { 1 , 2 , ⋯   , n } ( ∣ λ i ∣ + ϵ ) = ρ ( A ) + ϵ \|\mathbf{A}\|=\max_{i\in\left\{1,2,\cdots,n\right\}}\left(\left|\lambda_i\right|+\epsilon\right)=\rho\left(\mathbf{A}\right)+\epsilon A=i{1,2,,n}max(λi+ϵ)=ρ(A)+ϵ

    性质3

    ρ ( A ) < 1 ⇔ lim ⁡ k → ∞ A k = 0 \rho\left(\mathbf{A}\right)<1 \Leftrightarrow \lim\limits_{k\to\infty}\mathbf{A}^k=0 ρ(A)<1klimAk=0

    证明:
    A \mathbf{A} A的特征值为 λ \lambda λ,对应的特征向量为 v \mathbf{v} v
    假设 lim ⁡ k → ∞ A k = 0 \lim\limits_{k\to\infty}\mathbf{A}^k=0 klimAk=0
    0 = ( lim ⁡ k → ∞ A k ) v = lim ⁡ k → ∞ ( A k v ) = lim ⁡ k → ∞ ( λ k v ) = v lim ⁡ k → ∞ λ k

    0=(limkAk)v=limk(Akv)=limk(λkv)=vlimkλk" role="presentation" style="position: relative;">0=(limkAk)v=limk(Akv)=limk(λkv)=vlimkλk
    0=(klimAk)v=klim(Akv)=klim(λkv)=vklimλk
    因为 v ≠ 0 \mathbf{v}\neq 0 v=0,
    lim ⁡ k → ∞ λ k = 0 ⇒ ∣ λ ∣ < 1 ⇒ ρ ( A ) < 1 \lim\limits_{k\to\infty}\lambda^k=0\Rightarrow \left|\lambda\right|<1 \Rightarrow \rho\left(\mathbf{A}\right)<1 klimλk=0λ<1ρ(A)<1

    假设 ρ ( A ) < 1 \rho\left(\mathbf{A}\right)<1 ρ(A)<1
    由若尔当分解定理
    A = S ( J n 1 ( λ 1 ) 0 ⋯ 0 0 J n 2 ( λ 2 ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 J n k ( λ k ) ) S − 1 \mathbf{A}=\mathbf{S}

    (Jn1(λ1)000Jn2(λ2)000Jnk(λk))" role="presentation" style="position: relative;">(Jn1(λ1)000Jn2(λ2)000Jnk(λk))
    \mathbf{S}^{-1} A=S Jn1(λ1)000Jn2(λ2)000Jnk(λk) S1
    其中 S \mathbf{S} S是可逆矩阵, λ 1 , ⋯   , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A \mathbf{A} A的特征值, n 1 + ⋯ + n k = n n_1+\cdots+n_k=n n1++nk=n
    由若尔当块的性质,对于充分大的 k k k,有
    J n i k ( λ i ) = [ λ i k ( k 1 ) λ i k − 1 ( k 2 ) λ i k − 2 ⋯ ( k n i − 1 ) λ i k − n i + 1 0 λ i k ( k 1 ) λ i k − 1 ⋯ ( k n i − 2 ) λ i k − n i + 2 ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 … λ i k ( k 1 ) λ i k − 1 0 0 ⋯ 0 λ i k ] \mathbf{J}_{n_{i}}^{k}\left(\lambda_{i}\right)=\left[
    \begin{array}{ccccc} \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}" role="presentation" style="position: relative;">\begin{array}{ccccc} \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}
    \right) \lambda_{i}^{k-1} & \left(
    k2" role="presentation" style="position: relative;">k2
    \right) \lambda_{i}^{k-2} & \cdots & \left(
    kni1" role="presentation" style="position: relative;">kni1
    \right) \lambda_{i}^{k-n_{i}+1} \\ 0 & \lambda_{i}^{k} & \left(
    k1" role="presentation" style="position: relative;">k1
    \right) \lambda_{i}^{k-1} & \cdots & \left(
    kni2" role="presentation" style="position: relative;">kni2
    \right) \lambda_{i}^{k-n_{i}+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{i}^{k} & \left(
    k1" role="presentation" style="position: relative;">k1
    \right) \lambda_{i}^{k-1} \\ 0 & 0 & \cdots & 0 & \lambda_{i}^{k} \end{array}\right]
    Jnik(λi)= λik000(k1)λik1λik00(k2)λik2(k1)λik1λik0(kni1)λikni+1(kni2)λikni+2(k1)λik1λik

    所以
    lim ⁡ k → ∞ J n i k = 0 ⇒ lim ⁡ k → ∞ J k = 0 ⇒ lim ⁡ k → ∞ A k = lim ⁡ k → ∞ S J k S − 1 = S ( lim ⁡ k → ∞ J k ) S − 1 = 0 \lim\limits_{k\to\infty}\mathbf{J}_{n_i}^k=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{J}^k=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{A}^k=\lim\limits_{k\to\infty}\mathbf{S}\mathbf{J}^k\mathbf{S}^{-1}=\mathbf{S}\left(\lim\limits_{k\to\infty}\mathbf{J}^k\right)\mathbf{S}^{-1}=0 klimJnik=0klimJk=0klimAk=klimSJkS1=S(klimJk)S1=0

    Gelfand定理

    ρ ( A ) = lim ⁡ k → ∞ ∥ A k ∥ 1 k \rho\left(\mathbf{A}\right)=\lim\limits_{k\to\infty}\|\mathbf{A}^{k}\|^{\frac{1}{k}} ρ(A)=klimAkk1

    证明: k ≥ 0 k\ge 0 k0
    ρ ( A ) k = ρ ( A k ) = ∥ A k ∥ ⇒ ρ ( A ) ≤ ∥ A k ∥ 1 k ⇒ ρ ( A ) ≤ lim ⁡ k → ∞ ∥ A k ∥ 1 k \rho\left(\mathbf{A}\right)^k=\rho\left(\mathbf{A}^k\right)=\|\mathbf{A}^k\|\Rightarrow\rho\left(\mathbf{A}\right)\le\|\mathbf{A}^k\|^{\frac{1}{k}}\Rightarrow \rho\left(\mathbf{A}\right)\le\lim\limits_{k\to\infty}\|\mathbf{A}^k\|^{\frac{1}{k}} ρ(A)k=ρ(Ak)=Akρ(A)Akk1ρ(A)klimAkk1

    存在范数 ∥ ⋅ ∥ M \|\cdot\|_M M,使得 ∥ A ∥ M ≤ ρ ( A ) + ϵ \|\mathbf{A}\|_M\le \rho\left(\mathbf{A}\right)+\epsilon AMρ(A)+ϵ
    ( ∥ ⋅ ∥ M \|\cdot\|_M M M M M主要是为了和上面的范数区分)
    由范数的等价性
    ∃ C > 0 , s . t .   ∥ ⋅ ∥ ≤ C ∥ ⋅ ∥ M \exists C>0,s.t.\ \|\cdot\|\le C\|\cdot\|_M C>0,s.t. CM
    所以
    ∥ A k ∥ ≤ C ∥ A k ∥ M ≤ C ∥ A ∥ M k ≤ C ( ρ ( A ) + ϵ ) k ∥ A k ∥ 1 k ≤ C 1 k ( ρ ( A ) + ϵ ) lim ⁡ k → ∞ ∥ A k ∥ 1 k ≤ ρ ( A ) + ϵ \|\mathbf{A}^k\|\le C\|\mathbf{A}^k\|_M\le C\|\mathbf{A}\|_M^k\le C\left(\rho\left(\mathbf{A}\right)+\epsilon\right)^k\\ \|\mathbf{A}^k\|^{\frac{1}{k}} \le C^{\frac{1}{k}}\left(\rho\left(\mathbf{A}\right)+\epsilon\right)\\ \lim\limits_{k\to\infty} \|\mathbf{A}^k\|^{\frac{1}{k}}\le \rho\left(\mathbf{A}\right)+\epsilon AkCAkMCAMkC(ρ(A)+ϵ)kAkk1Ck1(ρ(A)+ϵ)klimAkk1ρ(A)+ϵ

    参考:
    https://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
    https://en.wikipedia.org/wiki/Spectral_radius

  • 相关阅读:
    链表内指定区间反转
    Codeforces Round #811 (Div. 3)
    奥菲斯办公
    【数据结构】AVL树
    Java基础 --- 注解
    传出神经系统分为哪两类,传出神经的分类与功能
    用户画像系列——推荐相关核心标签(偏好类)
    车载诊断协议DoIP系列 —— 诊断报文和诊断报文应答&传输层安全(TLS)
    【Jmeter 简单使用】
    IntelliJ IDEA 2023.2正式发布,新UI和Profiler转正
  • 原文地址:https://blog.csdn.net/qq_39942341/article/details/126238464