• Python学习笔记十一之一个简单的opencv阈值分割实例,求取圆度、轮廓椭圆拟合


    opencv-python阈值分割应用实例

    简介:
    1.给定数据是.txt的数据文件,首先读取文本数据转换为图像进行可视化
    2.然后运用阈值分割、形态学、位运算分割出脚掌
    3.对脚掌进行三等分,分别求出每个部分的特征参数:面积、等效椭圆长短轴、圆度

    结果预览:

    在这里插入图片描述

    1.包含库

    #脚掌分割与特征分析
    #pip install opencv-python matplotlib
    
    import numpy as np
    import matplotlib.pyplot as plt
    import cv2
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    2.读取txt文件数据转为矩阵并显示

    #读取txt文件输出矩阵
    def rdnumpy(txtname):
        f = open(txtname)
        line = f.readlines()
        lines = len(line)  # 行数
        for l in line:
            le = l.strip('\n').split('\t')
            columns = len(le) - 1  # 列
        print(lines,columns)
        A = np.zeros((lines, columns,1), dtype= np.float64)
        print(A.shape)
        row=0
        for lin in line:
            list = lin.strip('\n').split('\t')
            if(len(list)>8):
                #print(list[len(list)-1])
                for col in range(0,len(list)-1): #因为最后有个空格
                    #print(col)
                    if(row==3):
                        A[row, col] = 0
                    else:
                        A[row,col]=list[col]
                row+=1
    
        return A
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    3.获取单个连通域外接矩形

    def get_ROI(bw):
        [rows,cols]=bw.shape[0:2]
        x_min=cols*2
        x_max=-10
        y_min=rows*2
        y_max=-10
        for r in range(rows):
            for c in range(cols):
                if(bw[r,c]==255):
                    x_min=x_min if x_min<c else c
                    x_max=x_max if x_max>c else c
                    y_min=y_min if y_min<r else r
                    y_max=y_max if y_max>r else r
        w=x_max-x_min
        h=y_max-y_min
        rect=[x_min,y_min,w,h]
        return rect
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    4.单个连通域三等分

    #分割
    #输入:脚掌二值图
    #输出:三个区域
    def get_seg(img,rect):
        mask_0 = np.zeros(img.shape, np.uint8)
        mask_1 = np.zeros(img.shape, np.uint8)
        mask_2 = np.zeros(img.shape, np.uint8)
    
        p1 = rect[1] + int(rect[3] / 3)
        p2 = rect[1] + int(rect[3] * 2 / 3)
        m, n = img.shape
        for row in range(m):
            for col in range(n):
                if (img[row, col] == 255):
                    if (row < p1):
                        mask_0[row, col] = 255
                    elif (row >= p1 and row < p2):
                        mask_1[row, col] = 255
                    else:
                        mask_2[row, col] = 255
    
        masks = [mask_0, mask_1, mask_2]
        return masks
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    获取每个连通域轮廓

    def get_contours(masks):
        m0=cv2.cvtColor(masks[0],cv2.COLOR_GRAY2BGR)
        m1 = cv2.cvtColor(masks[1], cv2.COLOR_GRAY2BGR)
        m2 = cv2.cvtColor(masks[2], cv2.COLOR_GRAY2BGR)
        ms=[m0,m1,m2]
        colors=[(255,0,0),(0,255,0),(0,0,255)]
        for i in range(3):
            cnts, _ = cv2.findContours(masks[i], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            cv2.drawContours(ms[i], cnts, 0, colors[i], 1)
        #conts_=np.array(conts,dtype=int32)
        #res = np.hstack((ms[0],ms[1],ms[2]))
        res=cv2.bitwise_or(ms[0],ms[1])
        res_=cv2.bitwise_or(res,ms[2])
        return res_
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    5.特征评价

    #特征评价
    #输入:二值图像
    #输出:双层列表,存放每个区域的评价指标,依次是[面积,长轴,短轴,圆度]
    def get_canshu(masks):
        # mask_0 = np.zeros(img.shape, np.uint8)
        # mask_1 = np.zeros(img.shape, np.uint8)
        # mask_2 = np.zeros(img.shape, np.uint8)
        #
        # p1 = rect[1] + int(rect[3] / 3)
        # p2 = rect[1] + int(rect[3] * 2 / 3)
        # m, n = img.shape
        # for row in range(m):
        #     for col in range(n):
        #         if (thresh0[row, col] == 255):
        #             if (row < p1):
        #                 mask_0[row, col] = 255
        #             elif (row >= p1 and row < p2):
        #                 mask_1[row, col] = 255
        #             else:
        #                 mask_2[row, col] = 255
        #
        # masks = [mask_0, mask_1, mask_2]
        res=[]
        for m in masks:
            cnts, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
            (x, y, w, h) = cv2.boundingRect(cnts[0])  # 轮廓外界矩形
            area=cv2.contourArea(cnts[0])#面积
    
            # 椭圆拟合
            ellipse = cv2.fitEllipse(cnts[0])
            (x_, y_), (a, b), ang = ellipse
    
            #计算周长--圆度
            perimeter=cv2.arcLength(cnts[0], True)
            roundness=(4*3.1415926*area)/(perimeter*perimeter)
            re=[area,b,a,roundness]
            res.append(re)
        return res
    #打印输出
    def dayin(res,flg):
        for i in range(len(res)):
            if(flg==0):
                print("左脚掌区域 - ", str(i), ":   面积:", res[i][0], " 长轴:", res[i][1],
                 " 短轴:", res[i][2], " 圆度:", res[i][3])
            else:
                print("右脚掌区域 - ", str(i), ":   面积:", res[i][0], " 长轴:", res[i][1], 
                " 短轴:", res[i][2], " 圆度:", res[i][3])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48

    6.主函数

    if __name__=='__main__':
    
        path=[".\\files\\2022-08-04-19-23-08_pressure_0.txt",
              ".\\files\\2022-08-04-19-24-45_pressure_0.txt",
              ".\\files\\2022-08-04-19-25-35_pressure_0.txt"]
        src0 = rdnumpy(path[0])
        src1 = rdnumpy(path[1])
        src2 = rdnumpy(path[2])
        srcs=[src0,src1,src2]
    
        #显示原图
        plt.figure("src")
        l=len(srcs)
        n = 3
        for i in range(l):
            # sole_l=np.zeros((srcs[i].shape[0],int(srcs[i].shape[1]/2)),np.uint8)
            # sole_r = np.zeros((srcs[i].shape[0],int(srcs[i].shape[1]/2)), np.uint8)
    
            plt.subplot(n, l, i + 1), plt.imshow(srcs[i], 'gray'), plt.title(path[i])
    
            ret, thresh0 = cv2.threshold(np.uint8(src0), 0, 255, cv2.THRESH_BINARY)
            plt.subplot(n, l, i + 1 + l), plt.imshow(thresh0, 'gray'), plt.title(str(i)+"- uint8")
            # 阈值分割,T=23可以调参
            ret, thresh = cv2.threshold(np.uint8(src0), 23, 255, cv2.THRESH_BINARY)
            kernel = np.ones((3, 3), np.uint8)
            bw_dilate = cv2.dilate(thresh, kernel, iterations=2)
            bw_sole=cv2.bitwise_and(thresh0,bw_dilate)
            mask=cv2.cvtColor(bw_sole,cv2.COLOR_GRAY2BGR)
            # cv2.namedWindow("jiaozhang", cv2.WINDOW_NORMAL)
            # cv2.imshow("jiaozhang", mask)
    
            sole_=bw_sole.copy()
            sole_l=sole_[0:thresh0.shape[0],0:26]
            sole_r=sole_[0:thresh0.shape[0],26:53]
            rect_l=get_ROI(sole_l)
            rect_r=get_ROI(sole_r)
            cv2.line(mask,(rect_l[0],rect_l[1]+int(rect_l[3]/3)),(rect_l[0]+rect_l[2],rect_l[1]+int(rect_l[3]/3)),(0,255,0),1)
            cv2.line(mask, (rect_l[0], rect_l[1] + int(rect_l[3] *2 / 3)),(rect_l[0] + rect_l[2], rect_l[1] + int(rect_l[3] *2 / 3)), (0, 255, 0), 1)
            cv2.line(mask, (rect_r[0]+26, rect_r[1] + int(rect_r[3] / 3)),(rect_r[0]+26 + rect_r[2], rect_r[1] + int(rect_r[3] / 3)), (0, 0, 255), 1)
            cv2.line(mask, (rect_r[0]+26, rect_r[1] + int(rect_r[3] * 2 / 3)),(rect_r[0]+26 + rect_r[2], rect_r[1] + int(rect_r[3] * 2 / 3)), (0, 0, 255), 1)
            plt.subplot(n, l, i + 1 + l * 2), plt.imshow(mask), plt.title(str(i) + "- jiaozhang")
    
            masks_l=get_seg(sole_l,rect_l)
            conts_l = get_contours(masks_l)
            # cv2.namedWindow("1",cv2.WINDOW_NORMAL)
            # cv2.imshow("1",conts)
            masks_r = get_seg(sole_r, rect_r)
            conts_r = get_contours(masks_r)
            conts=np.hstack((conts_l,conts_r))
            cv2.namedWindow("contours",cv2.WINDOW_NORMAL)
            cv2.imshow("contours",conts)
    
            #特征评价
            res_l = get_canshu(masks_l)
            dayin(res_l, 0)
            res_r = get_canshu(masks_r)
            dayin(res_r,1)
    
        plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59

    附-txt数据

    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7890625	2.15625	3.6015625	4.578125	4.93359375	4.53125	3.88671875	3.5390625	3.27734375	2.9140625	2.27734375	1.3203125	0.0	0.890625	3.21875	4.828125	3.21875	0.8046875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.74609375	3.01953125	6.15625	7.015625	5.12890625	4.01171875	4.53515625	4.25	2.9609375	2.1015625	1.49609375	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3046875	3.296875	4.6328125	3.5703125	1.43359375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.03515625	5.1171875	10.1171875	10.0	5.37890625	2.7265625	2.625	1.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.671875	2.21484375	2.15625	4.3984375	10.09375	14.359375	12.125	5.6640625	1.125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.40625	6.5234375	12.03125	11.015625	5.65625	3.5234375	3.9375	2.625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.921875	1.6171875	2.28125	3.16015625	3.46875	3.234375	6.27734375	14.40625	21.8046875	20.1875	10.36328125	2.234375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0546875	4.62890625	7.96875	6.6796875	3.1328125	2.2265625	2.94921875	2.3828125	1.0546875	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.48828125	3.4921875	4.7109375	4.203125	3.20703125	2.5078125	2.15625	4.34765625	11.21484375	19.3515625	19.8671875	10.91015625	2.44921875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.98046875	3.15625	2.3515625	0.8828125	0.77734375	2.01953125	3.234375	2.9765625	1.46875	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.16796875	6.8125	8.05078125	5.37890625	2.20703125	1.0234375	0.9140625	1.765625	5.71875	11.9609375	13.5078125	7.70703125	1.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.265625	1.8984375	1.265625	0.0	0.0	2.2109375	4.859375	5.296875	2.8671875	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	4.7421875	8.71484375	9.234375	5.34765625	2.07421875	2.3359375	3.5	3.62109375	4.73828125	7.76953125	8.6015625	5.0859375	1.3125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.00390625	2.859375	2.0625	0.80078125	0.80078125	2.53125	4.890625	5.20703125	2.859375	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.61328125	6.61328125	9.6171875	8.4921875	5.140625	4.91015625	8.8515625	12.50390625	12.6640625	11.109375	10.6640625	10.29296875	7.44921875	3.3203125	0.78125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.25390625	4.33203125	5.5625	5.06640625	3.8125	3.875	5.046875	5.296875	4.06640625	2.19921875	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.81640625	4.65234375	10.77734375	13.1484375	10.0546875	8.6484375	13.6484375	21.375	26.32421875	26.41015625	22.8203125	19.484375	18.72265625	16.4765625	9.91015625	3.3671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.38671875	6.3125	10.07421875	12.4140625	13.36328125	13.015625	12.67578125	11.9765625	9.46484375	6.92578125	5.46484375	3.6171875	1.58203125	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.3125	7.125	15.55859375	18.4296875	16.34375	19.4375	29.58203125	38.40625	40.8828125	39.203125	34.80078125	29.921875	28.8984375	27.4375	18.79296875	7.5390625	1.328125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3203125	5.66015625	12.890625	19.1875	23.1484375	26.1328125	27.42578125	26.37890625	23.25	18.9296875	16.20703125	14.56640625	10.6484375	5.41796875	1.828125	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.4609375	7.390625	15.63671875	20.44140625	24.390625	33.86328125	46.984375	54.72265625	53.1875	49.0546875	45.52734375	41.23828125	38.69140625	35.34765625	24.875	10.78515625	2.08984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.41015625	10.6953125	21.21484375	30.0546875	35.109375	38.40234375	40.11328125	39.71484375	36.984375	31.78125	26.8828125	22.51171875	15.69921875	7.97265625	2.7421875	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.98046875	5.09375	12.38671875	21.96875	34.1640625	47.49609375	59.99609375	66.8046875	64.13671875	59.01171875	56.9296875	54.89453125	50.5703125	42.4609375	28.5390625	12.42578125	2.453125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.953125	5.33984375	14.609375	26.8046875	37.5078125	43.75	46.1640625	46.91015625	48.3203125	48.65234375	43.421875	34.38671875	24.671875	14.359375	6.0546875	1.828125	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.44140625	14.25	31.5625	51.21875	64.53515625	72.625	77.69921875	74.8203125	67.58203125	64.953125	64.94921875	59.8515625	48.10546875	31.203125	13.28125	2.54296875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.84375	4.6953125	12.43359375	22.7265625	33.71875	42.16015625	45.765625	47.50390625	51.6875	55.86328125	52.8984375	41.73828125	26.80859375	12.515625	3.51171875	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.55078125	8.984375	25.56640625	49.58984375	71.41796875	80.390625	81.29296875	81.73046875	75.95703125	64.734375	59.55078125	59.3125	53.68359375	41.8359375	26.63671875	11.140625	2.0625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.140625	5.75390625	11.5859375	20.78125	30.3359375	36.0546875	41.1953125	49.77734375	57.69140625	57.34765625	46.828125	30.61328125	14.54296875	4.0546875	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.8359375	14.85546875	37.21875	62.22265625	78.1640625	78.86328125	73.05859375	69.13671875	61.90625	50.33984375	42.77734375	39.05859375	32.26171875	22.89453125	13.7109375	5.56640625	1.00390625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1015625	3.6953125	10.703125	19.17578125	24.60546875	30.9765625	42.04296875	51.55859375	51.6328125	42.578125	29.65234375	16.24609375	5.73046875	0.90625	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	3.12109375	15.72265625	37.46484375	58.3828125	67.41796875	62.75390625	54.31640625	49.00390625	43.6640625	35.5390625	26.765625	19.2109375	12.30078125	6.6484375	3.1796875	1.17578125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.73828125	8.109375	16.25	20.67578125	24.56640625	32.84375	40.39453125	39.5078125	31.4765625	22.515625	14.07421875	6.03515625	1.1875	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.71875	13.109375	30.140625	46.12109375	52.890625	48.82421875	41.20703125	35.4375	31.13671875	25.71875	17.28515625	8.91015625	3.64453125	1.00390625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6484375	7.83203125	17.23828125	22.953125	24.73828125	27.88671875	30.80859375	29.23046875	23.48046875	16.7734375	10.90625	5.28125	1.2109375	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.68359375	11.7890625	24.66796875	36.1875	42.3125	40.828125	35.83203125	30.86328125	27.1875	23.671875	16.453125	8.33203125	3.33203125	0.796875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4296875	8.05078125	17.5	24.53125	26.3203125	26.55859375	25.9765625	26.078125	25.29296875	19.125	11.21875	5.23046875	1.29296875	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.7109375	11.08203125	20.91796875	28.3359375	33.07421875	34.171875	33.5703125	31.9765625	30.28515625	28.23828125	21.62890625	12.90625	6.03125	1.5078125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.28515625	5.24609375	11.359375	18.90234375	24.703125	26.9921875	27.3515625	26.0625	27.79296875	30.3828125	24.6171875	14.62109375	6.796875	1.69921875	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.98828125	7.953125	14.7890625	20.48828125	25.703125	30.0390625	34.28515625	36.30078125	34.89453125	31.15625	24.27734375	16.140625	8.1875	2.046875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1328125	8.62109375	16.41015625	22.70703125	27.203125	30.1171875	32.04296875	31.05078125	29.765625	29.21484375	24.0390625	15.765625	7.84375	1.9609375	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.84375	3.5078125	8.09765625	15.921875	25.95703125	34.375	40.2578125	42.21484375	38.42578125	30.1953125	21.32421875	14.38671875	7.59375	1.8984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.32421875	9.7578125	18.92578125	26.07421875	31.49609375	36.3359375	41.52734375	41.93359375	34.6484375	25.41796875	17.6875	11.4140625	5.765625	1.44140625	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.140625	5.5078125	16.62109375	31.96875	43.359375	47.140625	46.01171875	40.89453125	30.0625	17.4765625	9.171875	4.265625	1.0390625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	8.9765625	19.453125	29.41796875	37.88671875	45.87890625	53.37890625	52.9140625	39.609375	22.578125	10.96484375	5.16796875	2.265625	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.796875	5.22265625	16.3046875	32.08984375	44.75	48.81640625	47.16015625	42.85546875	32.92578125	18.4296875	7.26953125	2.3359375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9375	1.40625	0.9375	1.93359375	9.03515625	22.5703125	37.60546875	49.96484375	58.66015625	62.31640625	55.6484375	37.7109375	18.30859375	6.25390625	1.52734375	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.5078125	11.33203125	24.2734375	38.5703125	47.5859375	48.5625	45.09765625	37.87109375	25.48046875	13.19140625	5.75390625	1.97265625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.83984375	3.17578125	3.203125	4.4296875	12.39453125	28.5625	46.69140625	59.50390625	64.94140625	62.78515625	51.1328125	31.83984375	13.62109375	3.484375	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.47265625	6.06640625	15.921875	31.14453125	44.8984375	49.46875	48.16796875	44.30859375	35.1953125	23.66015625	13.85546875	6.359375	2.05859375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.265625	4.1796875	7.9609375	11.05078125	14.2421875	21.39453125	34.5546875	48.65234375	57.234375	59.53125	55.3671875	42.640625	24.4609375	9.23046875	1.8203125	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6796875	8.96484375	22.48046875	38.81640625	49.15625	53.17578125	51.76171875	43.71484375	33.66015625	24.77734375	16.17578125	8.6015625	3.33984375	0.74609375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90234375	1.7109375	5.07421875	11.84375	20.34765625	28.4453125	34.23828125	38.27734375	43.2578125	49.0234375	53.6484375	55.23046875	48.98828125	33.203125	15.6953125	4.734375	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.9453125	14.96484375	32.5078125	48.30859375	57.0390625	56.7421875	49.37890625	41.8203125	36.8359375	31.0625	22.0	11.59765625	3.9453125	0.0	0.0	0.0	0.0	0.0	0.0	2.125	3.75	6.18359375	13.484375	26.1015625	40.359375	53.44921875	63.12890625	66.84765625	64.00390625	59.94140625	60.69140625	60.51953125	48.390625	26.90234375	9.390625	1.8046875	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.94140625	10.73828125	27.2265625	44.10546875	53.98828125	55.28125	51.31640625	47.58984375	46.6875	45.46875	38.96875	25.9453125	11.34375	2.40234375	0.0	0.0	0.0	0.0	0.875	3.69921875	7.34765625	12.87890625	25.18359375	43.95703125	63.1875	79.69921875	94.41015625	102.32421875	95.31640625	82.23046875	76.171875	68.38671875	47.375	22.01953125	6.1015625	0.7734375	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.20703125	7.65234375	21.69140625	37.6796875	48.1640625	52.53125	53.2734375	53.3984375	56.09375	58.98828125	55.546875	41.359375	20.51953125	5.265625	0.0	0.0	0.0	0.0	0.91015625	4.65625	11.4609375	21.79296875	39.4453125	64.34765625	88.1171875	104.94140625	118.3671875	125.2109375	116.84765625	103.09765625	93.03125	74.2890625	43.36328125	16.45703125	3.58203125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.44140625	18.1171875	34.5546875	47.55078125	56.8984375	62.95703125	67.0390625	74.12890625	79.96875	74.7578125	56.19140625	30.59765625	10.30078125	1.73046875	0.0	0.0	0.0	0.8671875	5.72265625	16.78515625	32.9765625	55.7734375	86.30078125	114.203125	128.19921875	132.19140625	130.76171875	122.28515625	113.3046875	102.859375	76.7890625	39.8359375	12.82421875	2.23046875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.01171875	15.671875	32.53125	48.60546875	63.828125	76.0703125	85.50390625	98.15625	106.26171875	96.58203125	72.37890625	44.04296875	19.578125	5.24609375	0.0	0.0	0.0	0.0	5.80078125	19.6171875	41.4296875	69.76171875	103.796875	132.34765625	143.07421875	141.65625	136.9921875	128.48828125	118.125	102.4296875	71.73046875	35.0625	11.22265625	2.45703125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6953125	12.421875	28.296875	46.19140625	65.1328125	81.28515625	94.31640625	109.41796875	117.79296875	106.58203125	82.33984375	56.09375	30.14453125	10.1171875	1.46875	0.0	0.0	0.0	4.34765625	17.921875	43.6484375	77.3203125	111.7890625	137.0546875	148.046875	151.40625	149.28515625	138.3828125	122.546875	99.27734375	63.3046875	28.1171875	8.9609375	2.57421875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.875	9.68359375	23.91796875	41.91015625	61.6796875	78.9140625	91.953125	103.515625	108.65234375	99.76171875	81.6796875	61.02734375	36.46484375	13.625	2.21484375	0.0	0.0	0.0	3.4296875	15.75	43.23828125	80.79296875	114.0546875	134.3359375	146.1640625	154.83203125	153.75390625	140.83203125	123.53125	96.671875	56.57421875	21.61328125	5.58203125	1.51171875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2734375	7.01171875	18.95703125	36.03515625	55.8125	74.39453125	88.3984375	96.94921875	99.2578125	92.96484375	79.26953125	60.9609375	37.265625	14.33984375	2.421875	0.0	0.0	0.0	3.32421875	14.48828125	41.75	81.765625	115.16015625	131.01171875	139.78515625	148.81640625	149.875	138.9453125	119.47265625	87.65234375	46.40234375	14.9453125	2.546875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8984375	13.03515625	28.546875	48.0390625	68.4375	85.58984375	96.15625	99.60546875	93.5234375	77.5	56.3125	32.9140625	12.59375	2.2890625	0.0	0.0	0.0	2.484375	11.33203125	34.70703125	72.65625	107.4140625	125.20703125	135.03515625	146.3125	151.76953125	140.46875	110.80078125	69.8828125	31.16796875	8.046875	0.80859375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.87890625	8.50390625	21.14453125	38.68359375	59.1171875	77.78515625	91.546875	98.546875	92.4765625	72.6484375	48.06640625	25.7265625	9.73828125	2.21875	0.0	0.0	0.0	1.203125	6.66796875	22.23828125	50.98046875	84.5078125	109.91015625	126.70703125	140.93359375	147.04296875	131.88671875	94.29296875	50.1171875	17.73828125	3.30859375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.015625	5.14453125	13.65234375	27.515625	45.4609375	62.390625	76.6484375	86.65234375	83.51953125	64.65625	39.87890625	19.11328125	6.85546875	1.93359375	0.0	0.0	0.0	0.0	3.25	10.98046875	27.66015625	54.08984375	80.796875	98.2421875	107.87890625	109.3046875	95.32421875	65.63671875	32.1640625	9.55078125	1.23828125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.109375	6.41015625	15.53515625	28.80078125	41.6875	52.91015625	62.12109375	62.15234375	48.48046875	28.3984375	12.125	3.78125	1.06640625	0.0	0.0	0.0	0.0	1.35546875	4.109375	11.1796875	25.9921875	43.453125	53.640625	55.6484375	52.96875	45.2890625	31.734375	15.6640625	4.3515625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.75390625	5.9140625	13.06640625	20.671875	26.953125	31.71484375	31.82421875	24.265625	13.15234375	4.89453125	1.20703125	0.0	0.0	0.0	0.0	0.0	0.0	0.8359375	2.63671875	7.578125	14.15625	17.66796875	16.93359375	14.55859375	12.05078125	8.70703125	4.390625	1.15625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1640625	3.3984375	6.25390625	8.46875	9.5703125	8.9765625	6.19140625	2.85546875	0.8515625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.875	1.9921875	2.6015625	2.3046875	1.70703125	1.3046875	0.9375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.609375	2.3359375	2.4296875	1.8671875	0.90625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.34375	3.1171875	5.078125	6.35546875	7.8984375	11.015625	13.4140625	12.1015625	9.12109375	7.49609375	6.19140625	3.9921875	1.82421875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.48828125	5.703125	14.4375	23.375	25.95703125	20.95703125	13.3515625	8.62109375	7.0	5.67578125	3.828125	2.09765625	0.828125	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.08984375	6.39453125	13.7578125	19.0625	18.68359375	17.078125	17.40234375	15.69921875	9.9453125	3.83984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.90234375	9.87890625	25.04296875	38.72265625	40.12109375	30.36328125	20.87890625	15.625	9.5078125	3.1484375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2578125	8.60546875	17.3515625	27.1875	32.171875	31.5859375	32.046875	35.25	33.2734375	21.86328125	8.5546875	1.49609375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0546875	14.3984375	31.1484375	44.81640625	44.78125	34.9140625	29.4765625	27.296875	17.8828125	6.2578125	1.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6796875	8.0625	18.59765625	29.37109375	36.55859375	38.1875	37.18359375	39.55859375	46.19921875	47.3671875	34.078125	14.421875	2.671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7734375	6.1796875	14.4296875	25.41796875	33.578125	31.6875	24.71875	25.40234375	28.76171875	22.171875	10.484375	3.203125	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.06640625	13.28515625	27.1328125	35.21875	35.32421875	32.03515625	29.78125	32.41015625	42.77734375	52.8671875	45.4921875	22.27734375	4.61328125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2890625	6.00390625	9.9765625	13.79296875	16.56640625	14.8671875	11.76953125	15.85546875	24.328125	25.98046875	18.51171875	8.5625	2.18359375	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.140625	5.99609375	18.20703125	31.75390625	35.08984375	28.19921875	20.0	15.58203125	17.1171875	28.26953125	44.10546875	44.5546875	24.24609375	5.38671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.51953125	3.78125	5.5234375	6.5859375	8.0	8.60546875	8.30859375	12.00390625	21.9921875	30.25	27.49609375	16.01171875	5.50390625	0.85546875	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.70703125	10.97265625	22.4765625	32.32421875	31.98046875	23.05078125	14.31640625	9.30078125	8.5703125	14.4453125	24.42578125	26.171875	14.8359375	3.390625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.09375	4.41015625	8.796875	11.75390625	13.53125	14.91015625	15.015625	16.0625	22.671875	31.3828125	32.19140625	22.66015625	10.2109375	2.4453125	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.40234375	6.32421875	14.890625	24.203125	29.98828125	28.66015625	23.94140625	21.3828125	19.046875	15.8984375	14.8671875	15.45703125	13.4765625	7.5859375	2.16796875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.87109375	3.6015625	11.203125	21.74609375	28.5234375	29.49609375	28.1171875	26.2265625	24.30078125	25.71875	30.87109375	33.25	27.8125	16.34765625	5.73828125	0.86328125	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.1328125	4.19921875	10.26953125	18.19140625	26.3828125	32.703125	34.45703125	35.31640625	38.77734375	39.18359375	34.03125	28.1640625	24.82421875	22.5	16.8515625	8.125	1.9296875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.75	3.73828125	10.29296875	21.609375	35.26953125	44.3359375	45.71484375	43.32421875	40.20703125	35.90625	32.6796875	33.01171875	34.8828125	33.73828125	24.65625	10.8359375	2.046875	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	3.99609375	11.09765625	19.1484375	26.0390625	35.34375	46.8359375	53.40234375	55.734375	58.921875	59.2890625	53.0859375	45.359375	43.125	44.90625	39.16015625	21.8984375	6.12890625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.125	6.375	17.0546875	30.13671875	42.03125	51.15234375	56.40625	58.03515625	56.7421875	52.11328125	46.43359375	42.90625	42.88671875	43.53125	34.85546875	16.75	3.52734375	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.984375	6.140625	16.7890625	27.26171875	34.625	46.2265625	62.2265625	72.34765625	75.22265625	76.06640625	74.33984375	68.984375	65.59765625	67.3515625	68.3515625	58.1640625	33.734375	10.39453125	1.06640625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.75	5.6171875	17.66796875	32.5078125	44.19140625	54.65625	64.6484375	70.3046875	71.1015625	68.578125	64.8984375	60.56640625	56.03515625	52.28125	41.24609375	20.67578125	4.8984375	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	4.66015625	14.1953125	25.54296875	35.9921875	50.4453125	68.3359375	82.4453125	89.96484375	90.30078125	84.1796875	78.19140625	80.13671875	84.63671875	80.4296875	64.109375	37.1796875	12.23046875	1.4921875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1796875	13.57421875	29.17578125	43.2265625	56.38671875	69.24609375	77.25390625	79.99609375	80.25390625	79.6875	75.08203125	64.4453125	53.203125	39.46875	20.08984375	5.16796875	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.88671875	8.8515625	23.2734375	41.42578125	58.2109375	73.49609375	88.86328125	99.80078125	98.9140625	87.62109375	78.38671875	79.70703125	82.7421875	76.65625	59.625	33.81640625	11.03515625	1.3984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.98828125	10.2890625	24.125	37.7890625	50.875	64.6015625	75.3203125	80.79296875	83.14453125	83.5703125	78.77734375	67.70703125	54.359375	37.859375	18.16015625	4.390625	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.09765625	10.2421875	35.6328125	66.1953125	81.109375	84.65234375	91.72265625	97.89453125	93.55078125	81.125	72.5859375	73.54296875	73.69140625	64.265625	45.95703125	23.5390625	6.87109375	0.76171875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.546875	7.8046875	17.984375	27.84765625	38.34375	52.34765625	64.76953125	70.703125	74.39453125	77.05078125	74.65234375	68.55078125	58.71484375	40.2578125	17.75	3.65625	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.4453125	14.203125	49.2890625	87.6484375	97.84765625	89.41015625	86.0859375	84.2109375	76.51171875	66.8203125	62.171875	63.671875	60.51171875	46.0078125	26.671875	10.8828125	2.49609375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8125	4.171875	9.66015625	15.13671875	23.703125	39.45703125	53.8125	58.2734375	61.00390625	66.10546875	66.75390625	63.0390625	54.62890625	36.53125	15.15625	2.81640625	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.328125	12.54296875	42.97265625	76.12109375	85.27734375	78.42578125	73.99609375	68.546875	59.6953125	52.06640625	47.2734375	44.1171875	37.328125	24.69140625	11.6484375	3.51953125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.09765625	2.79296875	5.09765625	12.35546875	29.78125	48.19140625	54.23828125	54.32421875	57.83984375	59.17578125	53.9453125	42.609375	25.6015625	9.67578125	1.7734375	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.04296875	7.88671875	25.63671875	46.98046875	57.88671875	60.1328125	60.78515625	56.578125	48.3125	40.69921875	33.734375	26.40625	18.27734375	10.5390625	4.6796875	1.21484375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.34765625	7.078125	22.5078125	42.984375	54.69140625	56.1796875	56.2109375	53.59375	45.0390625	32.2578125	17.68359375	6.671875	1.828125	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.31640625	6.43359375	16.0546875	27.82421875	37.34375	44.27734375	49.9765625	50.0	43.6484375	35.76953125	28.8515625	22.06640625	13.52734375	5.98828125	2.1875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3515625	6.625	17.9296875	35.10546875	50.5625	56.859375	54.9765625	46.48046875	35.51953125	25.95703125	16.1484375	7.9453125	3.29296875	0.80859375	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.13671875	8.7421875	16.515625	22.28125	27.2578125	34.03515625	43.0546875	48.02734375	45.26171875	38.375	31.6796875	25.1953125	15.296875	5.66015625	1.484375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.72265625	8.98828125	17.67578125	29.12109375	42.4921875	50.28515625	48.07421875	38.1796875	28.47265625	22.859375	16.67578125	9.73828125	4.5	1.125	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.6015625	10.40625	18.1171875	21.1875	23.578125	30.015625	40.37109375	48.19140625	48.28125	41.59765625	33.22265625	25.68359375	15.546875	5.76171875	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6875	5.3203125	13.0078125	21.5078125	29.56640625	38.7734375	44.234375	42.34375	35.1015625	27.328125	21.72265625	15.3515625	8.62109375	3.859375	0.96484375	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.96875	7.875	13.92578125	17.734375	23.3828125	32.77734375	43.30078125	50.5234375	49.81640625	40.16796875	28.6328125	20.46875	12.00390625	4.234375	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.53125	7.07421875	16.48828125	27.41796875	36.0234375	43.015625	46.38671875	45.33203125	39.92578125	30.01171875	19.59375	10.984375	4.92578125	1.875	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.83203125	3.328125	6.765625	12.921875	24.9296875	39.48828125	50.53515625	55.5859375	52.0078125	38.91796875	24.35546875	14.8125	7.54296875	2.1015625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8515625	6.44921875	17.765625	32.6796875	44.71875	52.7890625	56.27734375	54.68359375	46.53515625	30.83203125	14.9296875	5.50390625	1.57421875	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1953125	8.5	22.5703125	41.12890625	56.8671875	63.21484375	57.45703125	43.2109375	27.91796875	15.99609375	7.21875	1.83984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.42578125	6.9765625	20.10546875	37.64453125	53.1875	63.875	67.45703125	62.6484375	49.42578125	29.3671875	11.1640625	2.29296875	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.07421875	14.671875	35.36328125	58.859375	69.140625	62.9921875	51.18359375	38.890625	25.79296875	13.5	4.8359375	1.00390625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4609375	4.5859375	12.7890625	26.9765625	43.4921875	58.1484375	67.8359375	69.484375	62.7109375	48.359375	28.27734375	10.3515625	1.703125	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.03125	7.84765625	28.87890625	56.95703125	70.8046875	67.71875	60.76171875	52.73828125	40.546875	26.6328125	16.4296875	10.18359375	4.734375	0.99609375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.375	7.015625	14.4765625	24.859375	37.34765625	49.16015625	58.0703125	62.86328125	62.48828125	56.10546875	42.3984375	23.859375	8.53125	1.4296875	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9765625	23.5625	52.328125	73.42578125	78.59375	73.3984375	64.5	54.04296875	45.23828125	42.49609375	36.5703125	19.68359375	4.66796875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.69921875	7.69921875	19.33984375	32.33203125	42.03125	48.96875	54.46875	57.94921875	59.0078125	56.796875	48.359375	32.33984375	15.08984375	4.43359375	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.82421875	17.515625	43.4296875	72.39453125	88.3828125	84.05859375	70.96875	62.31640625	62.8046875	70.1015625	64.515625	36.671875	10.5390625	1.62890625	0.7734375	0.0	0.0	0.0	0.0	0.0	0.0	0.75	5.3359375	18.1015625	37.9921875	55.140625	62.41796875	63.69140625	63.8359375	63.65234375	62.0078125	55.23828125	40.82421875	22.19140625	7.62109375	1.390625	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.890625	11.49609375	30.32421875	57.73828125	79.7734375	82.2578125	71.65234375	65.2890625	70.39453125	78.9375	71.39453125	43.6015625	17.44921875	6.40234375	3.54296875	1.76953125	0.0	0.0	0.0	0.0	0.7734375	2.84375	12.1015625	32.09375	57.359375	76.06640625	83.6484375	85.23828125	83.30859375	78.9140625	71.77734375	56.2890625	33.82421875	14.26953125	3.59765625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.77734375	6.9296875	18.578125	37.6328125	58.62109375	70.78125	70.60546875	68.28125	72.87890625	77.41796875	68.5078125	47.0703125	26.49609375	14.17578125	7.62109375	3.2578125	0.0	0.0	0.0	1.875	3.98828125	9.3125	24.3984375	49.87890625	76.484375	94.59375	103.80078125	107.71484375	105.54296875	98.85546875	86.51171875	61.3671875	30.5390625	9.73828125	1.703125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.828125	4.12109375	11.86328125	24.94921875	43.41796875	62.83984375	75.10546875	81.10546875	87.92578125	91.4453125	82.1640625	62.24609375	41.40625	24.4453125	11.7734375	3.9453125	0.0	0.0	0.0	3.125	8.48046875	20.49609375	43.5703125	73.93359375	100.25390625	114.76171875	119.88671875	120.3984375	117.4140625	111.8828125	97.44921875	66.50390625	31.0234375	8.8671875	1.234375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.296875	8.04296875	19.44921875	38.08984375	62.046875	83.72265625	99.66015625	113.109375	120.92578125	113.39453125	90.8828125	64.1953125	38.69921875	17.03515625	4.5078125	0.0	0.0	0.0	2.6015625	10.25	29.33984375	60.44140625	94.94921875	120.11328125	128.88671875	127.3125	124.30078125	121.99609375	116.5703125	98.12890625	64.3984375	30.0703125	9.046875	1.34375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.04296875	5.36328125	16.38671875	36.26171875	62.99609375	89.27734375	109.53125	125.61328125	137.16015625	133.8203125	112.875	84.86328125	53.74609375	23.625	5.69921875	0.0	0.0	0.0	1.34375	9.21875	31.30859375	65.3046875	99.17578125	121.25	128.77734375	129.875	129.734375	126.98046875	117.1875	92.203125	55.78515625	24.65234375	7.4375	1.15625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.56640625	12.66796875	31.65234375	60.078125	89.6640625	110.296875	121.48046875	128.06640625	125.828125	111.875	91.21875	62.05859375	28.51953125	6.92578125	0.0	0.0	0.0	0.734375	7.87890625	29.70703125	62.4921875	91.125	107.47265625	118.05078125	129.7890625	135.48046875	129.7109375	114.46875	84.7734375	45.67578125	16.6328125	4.1015625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7890625	7.578125	23.4921875	51.4765625	83.6015625	106.34375	114.125	113.69140625	109.30078125	100.66015625	86.984375	61.91015625	29.42578125	7.38671875	0.0	0.0	0.0	0.0	5.88671875	25.453125	57.23828125	83.5390625	95.7890625	106.6875	123.59375	133.7421875	128.65625	110.3515625	76.58984375	35.984375	9.51953125	1.2421875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.421875	15.4765625	40.3359375	72.14453125	98.03125	109.8359375	110.859375	105.6796875	95.9453125	81.62109375	57.51953125	27.4609375	7.09375	0.0	0.0	0.0	0.0	3.0859375	17.26953125	45.734375	74.1796875	90.58984375	103.37109375	119.62109375	130.91015625	126.671875	102.6015625	63.46484375	25.71484375	5.11328125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.25390625	9.3046875	30.45703125	61.0859375	89.0625	107.0703125	114.51171875	110.37109375	96.47265625	77.3046875	52.0078125	24.34765625	6.359375	0.0	0.0	0.0	0.0	1.015625	8.42578125	28.51953125	56.0234375	79.80078125	98.5703125	114.28125	122.57421875	113.53515625	82.46484375	43.11328125	14.69140625	2.484375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.13671875	22.0390625	48.92578125	74.95703125	95.26953125	108.6171875	108.703125	93.1328125	69.0546875	42.578125	18.84765625	4.87109375	0.0	0.0	0.0	0.0	0.0	2.91796875	13.78515625	34.29296875	57.8046875	77.01953125	88.84375	91.25	78.8671875	51.1796875	22.41796875	6.05859375	0.828125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.578125	12.75390625	30.015625	48.5078125	66.60546875	84.11328125	90.95703125	77.26171875	51.05078125	26.6796875	10.30859375	2.49609375	0.0	0.0	0.0	0.0	0.0	0.7734375	5.34375	16.6328125	31.9921875	44.3984375	49.5859375	47.671875	38.578125	23.40625	9.1171875	1.8671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.875	4.37890625	11.28515625	20.875	33.3203125	48.6484375	57.2890625	47.875	27.58203125	11.30078125	3.23046875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.41796875	5.44140625	11.81640625	17.22265625	18.70703125	16.6015625	12.69921875	7.72265625	3.015625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.16015625	5.58984375	11.0625	18.34375	22.69921875	18.49609375	9.5859375	3.1796875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.80859375	2.16015625	3.65625	4.15625	3.390625	2.33203125	1.4375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.625	3.765625	6.546875	8.1171875	6.4375	3.21875	1.078125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9296875	3.6953125	6.0546875	10.5234375	16.45703125	19.38671875	18.37109375	17.69140625	17.03125	12.53515625	6.1328125	1.9375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9609375	4.23828125	9.83984375	13.5078125	12.38671875	9.2578125	6.90625	5.02734375	3.453125	2.78515625	2.47265625	1.59765625	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5859375	4.5546875	12.8203125	25.796875	33.66015625	33.84765625	34.5078125	34.0546875	26.0078125	14.45703125	5.734375	1.28515625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2578125	10.125	21.26171875	25.859375	21.171875	14.078125	9.14453125	5.98828125	3.4375	1.4453125	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.63671875	6.9375	14.828125	26.078125	39.46484375	45.203125	43.91015625	46.5703125	49.359375	42.296875	27.35546875	12.3046875	3.0703125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.25390625	17.94921875	32.109375	34.8515625	26.25390625	16.91796875	12.0078125	9.890625	7.65625	4.453125	1.65625	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.77734375	13.8671875	26.87109375	37.5546875	43.5	41.109375	36.6796875	41.15234375	49.47265625	48.1875	33.91796875	15.640625	3.953125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.140625	7.421875	20.68359375	32.55859375	32.47265625	22.3984375	12.45703125	8.16796875	8.25390625	8.4375	6.015625	2.484375	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6875	7.0390625	19.35546875	33.0078125	38.609375	34.58203125	25.78515625	20.48828125	25.28125	36.34765625	40.5078125	30.09765625	13.5703125	3.15625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.125	6.23828125	15.3359375	22.33984375	21.5078125	14.08984375	6.296875	2.81640625	3.3984375	4.609375	3.7890625	1.65625	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4609375	10.984375	23.3046875	33.08984375	31.609375	21.35546875	11.73828125	8.078125	12.0	21.2734375	26.3828125	20.1953125	8.7890625	1.76953125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0390625	7.3203125	10.37890625	9.7421875	6.28125	2.6640625	0.76171875	0.0	1.375	1.6328125	1.1015625	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90234375	5.10546875	13.97265625	24.25	28.26171875	22.484375	13.66796875	8.2890625	6.1796875	8.3515625	14.59375	17.5859375	12.8125	5.42578125	1.203125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.43359375	3.58984375	4.9765625	4.58984375	3.703125	3.140625	2.3515625	1.5859375	2.0234375	3.27734375	3.2421875	1.640625	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.12890625	8.43359375	17.72265625	24.015625	22.9921875	17.7109375	15.296875	15.8046875	14.8515625	15.234375	19.625	21.48828125	16.30859375	8.60546875	3.13671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.98828125	3.37109375	5.9765625	7.19921875	7.6640625	8.359375	8.9140625	8.01171875	5.53515625	4.44921875	5.921875	6.09375	3.28125	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.875	5.8515625	16.44140625	26.328125	28.57421875	25.72265625	24.55078125	26.85546875	29.265625	29.04296875	27.86328125	28.9609375	30.8671875	28.25390625	19.44921875	8.76171875	1.95703125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.15234375	8.64453125	13.29296875	15.03125	16.49609375	18.53125	19.28515625	17.04296875	12.015625	8.328125	8.2265625	7.859375	4.8515625	1.80078125	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.91796875	10.73046875	25.75390625	35.9375	36.05859375	35.06640625	39.08203125	42.80078125	43.22265625	42.7890625	39.6796875	35.16796875	35.890625	38.23046875	31.546875	16.5390625	4.50390625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.48046875	6.78515625	15.98828125	23.52734375	26.35546875	28.234375	31.2890625	32.609375	29.453125	23.52734375	19.02734375	16.17578125	12.578125	8.40625	4.703125	1.84375	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.4140625	12.61328125	28.34765625	38.09765625	39.60546875	42.47265625	49.59765625	53.63671875	53.09375	52.51171875	48.984375	42.23828125	40.81640625	43.85546875	39.203125	23.37109375	7.78125	1.046875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.35546875	11.60546875	24.1328125	34.52734375	38.73046875	40.125	43.1171875	46.44921875	45.42578125	40.1171875	34.8203125	28.6953125	20.00390625	12.21484375	6.8359375	2.765625	1.03125	
    0.0	0.0	0.0	0.0	0.0	0.0	2.09765625	10.6953125	23.98046875	33.921875	39.4453125	45.796875	53.61328125	58.4296875	59.03515625	58.34375	56.31640625	52.51171875	50.03125	49.4765625	43.8515625	28.11328125	10.7578125	1.8984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.56640625	14.6640625	29.34765625	41.94140625	47.58984375	48.4140625	50.234375	55.015625	57.27734375	52.90234375	45.29296875	35.55078125	22.69140625	11.41796875	5.0625	1.84375	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.6171875	8.484375	20.7265625	33.44140625	43.12890625	50.828125	58.7265625	64.97265625	65.53515625	61.6484375	58.98046875	58.15234375	55.92578125	52.48046875	44.79296875	28.92578125	11.95703125	2.69140625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.57421875	12.5703125	26.62109375	39.8203125	46.890625	48.3671875	49.5	53.75	57.83984375	56.24609375	48.3203125	35.765625	20.7421875	8.52734375	2.48828125	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.6953125	9.390625	25.08984375	43.40234375	55.29296875	60.13671875	65.6328125	71.37890625	68.98046875	59.48828125	53.55859375	52.6953125	49.90234375	44.14453125	35.1015625	21.828125	9.48828125	2.62890625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.64453125	7.25390625	17.6484375	29.44140625	37.3359375	39.9140625	41.734375	46.140625	50.94921875	51.828125	46.22265625	34.95703125	21.453125	10.08984375	3.32421875	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.21484375	12.1640625	32.2265625	54.47265625	65.5546875	65.046875	65.56640625	68.1171875	62.79296875	50.921875	42.8671875	39.359375	33.703125	25.5859375	17.41796875	9.91796875	4.453125	1.4453125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8984375	9.14453125	19.0546875	27.328125	30.27734375	32.62109375	37.67578125	41.84375	42.09375	38.9296875	33.640625	25.98046875	15.88671875	6.4140625	1.22265625	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.37109375	12.49609375	31.7578125	51.93359375	60.890625	58.80078125	57.2734375	57.44140625	52.4140625	43.26953125	34.953125	27.3203125	18.09765625	9.56640625	4.50390625	2.0625	0.8984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.74609375	4.1796875	12.6328125	21.78125	25.58984375	27.109375	30.4609375	32.8125	31.91015625	30.2265625	30.140625	28.15625	19.61328125	8.390625	1.71875	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.22265625	10.8125	25.3125	39.38671875	46.26953125	47.03515625	48.375	49.703125	47.87109375	42.76171875	33.671875	21.94921875	10.58984375	3.0078125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.16015625	8.9375	18.7421875	24.51953125	25.5625	26.328125	26.609375	25.08203125	23.4921875	23.859375	23.375	17.13671875	7.94921875	2.109375	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.46875	10.6953125	21.4296875	29.2265625	33.51171875	37.83984375	44.54296875	49.4921875	50.078125	45.54296875	34.47265625	21.04296875	9.63671875	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.71484375	8.1484375	16.58203125	23.14453125	25.83984375	26.83984375	25.515625	22.46484375	19.65234375	17.76953125	16.00390625	11.66015625	5.88671875	2.03125	0.796875	
    0.0	0.0	0.0	0.0	0.0	0.0	3.0	12.171875	21.5625	24.953125	26.57421875	33.546875	44.953125	52.06640625	51.7734375	45.265625	34.0625	22.67578125	12.23046875	4.2734375	1.0625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.25	5.09765625	10.671875	16.80078125	22.44140625	27.95703125	31.6484375	29.109375	23.61328125	19.6953125	16.95703125	14.22265625	9.2421875	3.8203125	1.14453125	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	2.98046875	11.921875	20.59765625	23.12890625	25.1796875	34.484375	47.8046875	54.3515625	51.83984375	44.1953125	35.53515625	27.46484375	16.46875	6.0546875	1.59375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6796875	6.71875	13.14453125	19.0703125	24.62109375	31.203125	36.234375	33.4296875	26.7109375	22.65625	20.43359375	17.05078125	9.87890625	2.7734375	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	1.98046875	7.921875	14.578125	20.14453125	28.984375	43.1796875	56.4140625	60.71875	55.75390625	45.96484375	37.9296875	31.05078125	18.328125	5.78515625	1.0625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3671875	5.54296875	11.51171875	18.453125	25.33203125	32.15234375	38.4921875	38.7734375	33.01171875	27.01171875	22.19140625	16.6015625	8.6875	2.05859375	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.73828125	2.953125	6.96484375	16.36328125	34.3125	54.73828125	67.3046875	69.03125	61.6953125	48.36328125	37.55078125	29.4609375	16.44921875	4.3671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.30859375	8.484375	16.1640625	24.80859375	34.3203125	44.54296875	48.8671875	42.984375	31.44921875	19.98828125	11.078125	4.6796875	1.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.671875	12.71484375	34.11328125	58.078125	72.27734375	73.77734375	64.5703125	49.18359375	36.296875	26.6171875	14.6328125	4.20703125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.046875	10.27734375	21.02734375	31.87109375	43.25	54.96484375	59.6796875	51.86328125	34.81640625	16.9296875	5.56640625	1.28125	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1796875	8.453125	27.02734375	52.86328125	72.43359375	75.203125	64.046875	49.640625	37.73828125	27.2734375	16.2890625	6.74609375	1.7734375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.40234375	5.2578125	15.30078125	29.73046875	42.40234375	52.66015625	61.6484375	64.03515625	54.51171875	34.86328125	14.453125	2.9609375	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.12109375	17.3984375	43.0	67.265625	72.8671875	64.28515625	54.48046875	44.34765625	33.578125	24.046875	14.76953125	6.8125	2.18359375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.09375	5.328125	10.46875	19.703125	32.82421875	45.38671875	55.1484375	61.39453125	60.23046875	48.28515625	28.390625	10.34765625	1.6875	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.23828125	8.94140625	29.6640625	54.953125	68.703125	70.62890625	66.10546875	55.5546875	45.3515625	39.33984375	31.04296875	18.28515625	7.19140625	1.67578125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.72265625	6.6015625	13.91796875	20.54296875	26.56640625	34.84375	45.4375	54.86328125	58.58984375	52.87109375	37.44140625	18.5	5.32421875	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0078125	18.6796875	43.28125	66.43359375	78.9765625	77.6953125	67.05859375	58.9765625	57.109375	51.14453125	35.27734375	17.6484375	6.4453125	1.60546875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.16796875	5.98828125	16.45703125	29.125	37.5	40.69140625	44.5546875	51.76953125	57.78515625	57.1171875	46.81640625	28.71484375	11.375	2.265625	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.29296875	13.46484375	36.7109375	63.16015625	79.16796875	80.46875	73.796875	68.73046875	69.0234375	66.296875	52.078125	32.328125	15.9609375	5.45703125	0.875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.33984375	5.6953125	16.49609375	33.49609375	50.83984375	60.83203125	62.59375	63.7109375	66.19921875	64.16796875	55.16796875	39.71875	21.07421875	6.9296875	1.0390625	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6484375	10.34375	30.14453125	54.1796875	69.78125	74.484375	73.5859375	72.5	76.34765625	78.109375	66.71484375	47.0234375	27.3046875	11.125	2.4765625	0.0	0.0	0.0	0.0	0.0	0.0	3.21484375	9.01171875	19.359375	36.19921875	56.59765625	73.91796875	82.9921875	85.00390625	86.83984375	85.9296875	73.77734375	52.90234375	30.82421875	13.0390625	3.33203125	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0078125	6.70703125	20.98046875	40.58203125	56.95703125	67.22265625	72.734375	78.03515625	89.47265625	96.70703125	85.37890625	62.62890625	39.0859375	18.44140625	5.8046875	1.33203125	0.0	0.0	0.0	0.0	2.234375	11.1171875	25.69140625	42.1796875	60.98828125	78.890625	90.44140625	96.078125	99.92578125	104.60546875	102.671875	84.20703125	53.78515625	25.24609375	7.796875	1.26953125	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.25	11.98828125	27.375	46.01171875	64.046875	78.05859375	90.7265625	108.0	118.4765625	106.48828125	80.078125	53.0	28.5703125	10.84765625	2.6328125	0.0	0.0	0.0	0.0	3.4609375	16.8828125	38.30078125	60.03125	79.30859375	92.79296875	99.2734375	103.89453125	109.63671875	114.15625	109.7109375	88.453125	54.375	23.08984375	5.93359375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.01953125	5.74609375	18.01953125	38.609375	63.71484375	85.875	102.4140625	117.54296875	125.35546875	114.5703125	91.375	66.59765625	40.19921875	16.40234375	3.62109375	0.0	0.0	0.0	0.0	2.8828125	14.75390625	36.37890625	61.7421875	83.98828125	99.3203125	109.87890625	116.890625	119.40234375	118.36328125	108.94140625	84.10546875	49.265625	19.8828125	4.88671875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.671875	12.578125	33.140625	61.5390625	88.359375	105.359375	113.578125	114.3046875	105.19921875	90.8515625	74.16015625	49.4296875	21.73828125	5.0390625	0.0	0.0	0.0	0.0	2.140625	11.90625	31.96875	57.09765625	79.5625	99.52734375	119.140625	129.046875	125.88671875	119.39453125	105.78125	75.69140625	39.40234375	13.9453125	3.0546875	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.640625	9.78125	28.37109375	55.3671875	82.8671875	100.98046875	105.953125	101.9375	93.5703125	84.625	73.48828125	52.1796875	24.921875	6.69140625	0.75	0.0	0.0	0.0	2.03125	12.07421875	33.109375	57.30078125	75.88671875	93.46875	114.33203125	126.26953125	124.234375	117.69140625	101.1640625	66.28515625	28.95703125	7.640625	1.09765625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5390625	8.90234375	24.95703125	48.3359375	74.4453125	93.98046875	100.49609375	98.16796875	91.53515625	81.59765625	68.171875	47.66015625	23.43359375	6.82421875	0.890625	0.0	0.0	0.0	1.4453125	9.8359375	29.5703125	53.796875	72.3203125	87.73828125	105.41796875	118.22265625	119.640625	111.4921875	90.05078125	54.12890625	20.3984375	3.78515625	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5390625	7.8203125	20.91015625	42.26953125	68.54296875	88.15625	96.26953125	98.3671875	94.39453125	81.65234375	62.9296875	40.796875	19.5234375	5.99609375	1.015625	0.0	0.0	0.0	0.0	4.84375	17.65234375	37.92578125	59.71484375	80.7109375	100.16796875	112.9921875	112.875	97.94140625	70.65625	38.12109375	12.89453125	1.96484375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.953125	4.5234375	13.45703125	32.71875	58.7265625	77.49609375	85.6875	89.5625	87.01171875	74.12890625	54.30078125	32.9296875	15.55078125	5.6875	1.625	0.0	0.0	0.0	0.0	1.28515625	6.59765625	19.33984375	39.66015625	62.8359375	82.26171875	92.94140625	90.328125	72.78515625	46.328125	21.4453125	6.1484375	0.7734375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.21875	5.48046875	18.0078125	37.05078125	52.1953125	59.34765625	62.40234375	60.859375	51.6171875	36.375	20.57421875	9.7109375	4.5546875	1.90625	0.0	0.0	0.0	0.0	0.0	1.69921875	7.98828125	20.83984375	36.234375	48.23828125	54.05859375	51.453125	39.2890625	22.3359375	8.5625	1.83984375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.16796875	5.57421875	13.7734375	21.93359375	26.49609375	28.23828125	27.828125	23.66015625	15.953125	8.0859375	3.578125	2.11328125	1.140625	0.0	0.0	0.0	0.0	0.0	0.0	2.64453125	7.59375	13.39453125	17.47265625	19.125	17.78125	12.84765625	6.421875	1.92578125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.28125	4.56640625	6.171875	6.77734375	6.77734375	5.88671875	3.96875	1.8359375	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3203125	2.31640625	2.9296875	3.09765625	2.7890625	1.87109375	0.76953125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9296875	1.0625	1.0546875	1.03125	0.8828125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
  • 相关阅读:
    阿里架构师吐血整理,这是对“Spring家族”最完美的诠释
    Spring高手之路——深入理解与实现IOC依赖查找与依赖注入
    为什么索引要用B+树来实现呢,而不是B树
    java学习——异常处理机制
    大疆 dji mini4pro 不同充电器头 充电速度
    2016-04《信息资源管理 02378》真卷解析,逐题解析+背诵技巧
    pid 电机控制算法
    MySQL InnoDB 是怎么使用 B+ 树存数据的?
    BUUCTF:[MRCTF2020]套娃
    了解xss漏洞的简单案例
  • 原文地址:https://blog.csdn.net/yohnyang/article/details/126240202