Acwing255. 第K小数https://www.acwing.com/problem/content/257/
最经典的主席树用法,使用主席树来避免建立多个具有重复结点的权值线段树,直接通过不同版本间的信息维护出区间的最大最小值。
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #define int long long
- #define endl '\n'
- #define lowbit(x) (x) &(-x)
- #define mh(x) memset(x, -1, sizeof h)
- #define debug(x) cerr << #x << "=" << x << endl;
- #define brk exit(0);
- using namespace std;
- void TLE(){ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);}
- const int N = 2e5 + 10;
- const int M = 2 * N;
- const int mod = 998244353;
- const double esp = 1e-6;
- const double pi = acos(-1);
- typedef pair<int, int> PII;
- typedef long long ll;
- int n, m;
- int a[N];
- int root[N];
- struct node
- {
- int l, r;
- int cnt;
- }t[N*40];
- int idx;
- vector<int> alls;
- int id(int x)
- {
- return lower_bound(alls.begin(), alls.end(), x) - alls.begin();
- }
- int build(int l,int r)
- {
- int q = ++idx;
- if (l==r)
- return q;
- int mid = l + r >> 1;
- t[q].l = build(l, mid), t[q].r = build(mid + 1, r);
- return q;
- }
- int insert(int p,int l,int r,int x)
- {
- int q = ++idx;
- t[q] = t[p];
- if(l==r)
- {
- t[q].cnt++;
- return q;
- }
- int mid = l + r >> 1;
- if(x<=mid)
- t[q].l = insert(t[p].l, l, mid, x);
- else
- t[q].r = insert(t[p].r, mid + 1, r, x);
- t[q].cnt = t[t[q].l].cnt + t[t[q].r].cnt;
- return q;
- }
- int query(int q,int p,int l,int r,int k)
- {
- if(l==r)
- return l;
- int cnt = t[t[q].l].cnt - t[t[p].l].cnt;
- int mid = l + r >> 1;
- if(cnt>=k)
- return query(t[q].l, t[p].l, l, mid, k);
- else
- return query(t[q].r, t[p].r, mid + 1, r, k-cnt);
- }
- signed main()
- {
- scanf("%lld%lld", &n, &m);
- for (int i = 1; i <= n;i++)
- {
- scanf("%lld", &a[i]);
- alls.push_back(a[i]);
- }
- sort(alls.begin(), alls.end());
- alls.erase(unique(alls.begin(), alls.end()), alls.end());
- root[0] = build(0, alls.size()-1);
- for (int i = 1; i <= n;i++)
- root[i] = insert(root[i - 1], 0, alls.size()-1, id(a[i]));
- while(m--)
- {
- int l, r, k;
- scanf("%lld%lld%lld", &l, &r, &k);
- printf("%lld\n", alls[query(root[r], root[l - 1], 0, alls.size()-1, k)]);
- }
- }
P3919 【模板】可持久化线段树 1(可持久化数组)https://www.luogu.com.cn/problem/P3919
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- //#define int long long
- #define endl '\n'
- #define lowbit(x) (x) & (-x)
- #define mh(x) memset(x, -1, sizeof h)
- #define debug(x) cerr << #x << "=" << x << endl;
- #define brk exit(0);
- using namespace std;
- void TLE() { ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); }
- const int N = 2e6 + 10;
- const int M = 2 * N;
- const int mod = 998244353;
- const double esp = 1e-6;
- const double pi = acos(-1);
- typedef pair<int, int> PII;
- typedef long long ll;
- int n, m, idx;
- int a[N];
- int root[N];
- struct node
- {
- int l, r;
- int val;
- } t[N * 20];
- int build(int l, int r)
- {
- int q = ++idx;
- if (l == r)
- {
- t[q].val = a[l];
- return q;
- }
- int mid = l + r >> 1;
- t[q].l = build(l, mid), t[q].r = build(mid + 1, r);
- return q;
- }
- int modify(int p, int l, int r, int k, int x)
- {
- int q = ++idx;
- t[q] = t[p];
- if (l == r)
- {
- t[q].val = x;
- return q;
- }
- int mid = l + r >> 1;
- if (k <= mid)
- t[q].l = modify(t[p].l, l, mid, k, x);
- else
- t[q].r = modify(t[p].r, mid + 1, r, k, x);
- return q;
- }
-
- int query(int p, int l, int r, int k)
- {
- if (l == r)
- {
- return t[p].val;
- }
- int mid = l + r >> 1;
- if (k <= mid)
- return query(t[p].l, l, mid, k);
- else
- return query(t[p].r, mid + 1, r, k);
- }
-
- int main()
- {
- scanf("%d%d", &n, &m);
- for (int i = 1; i <= n; i++)
- {
- scanf("%d", &a[i]);
- }
- root[0] = build(1, n);
- int cnt = 0;
- while (m--)
- {
- int v, op, loc, val;
- scanf("%d%d%d", &v, &op, &loc);
- if (op == 1)
- {
- scanf("%d", &val);
- root[++cnt] = modify(root[v], 1, n, loc, val);
- }
- else
- {
- root[++cnt] = root[v];
- printf("%d\n",query(root[v], 1, n, loc));
- }
- }
- }
P1383 高级打字机https://www.luogu.com.cn/problem/P1383
这种方法很类似与普通线段树的开点方法,不过要对每一个版本的线段树都要维护一个代表当前版本线段树已存元素个数的len值,在树上进行二分开点。
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #define int long long
- #define endl '\n'
- #define lowbit(x) (x) & (-x)
- #define mh(x) memset(x, -1, sizeof h)
- #define debug(x) cerr << #x << "=" << x << endl;
- #define brk exit(0);
- using namespace std;
- void TLE() { ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); }
- const int N = 2e5 + 10;
- const int M = 2 * N;
- const int mod = 998244353;
- const double esp = 1e-6;
- const double pi = acos(-1);
- typedef pair<int, int> PII;
- typedef long long ll;
- int root[N], idx;
- int len[N];
- struct node
- {
- int l, r;
- char v;
- } t[N * 20];
- int insert(int p, int l, int r, int f, char v)
- {
- int q = ++idx;
- t[q] = t[p];
- if (l == r)
- {
- t[q].v = v;
- return q;
- }
- int mid = l + r >> 1;
- if (f <= mid)
- t[q].l = insert(t[p].l, l, mid, f, v);
- else
- t[q].r = insert(t[p].r, mid + 1, r, f, v);
- return q;
- }
-
- char query(int p, int l, int r, int f)
- {
- if (l == r)
- return t[p].v;
- int mid = l + r >> 1;
- if (f <= mid)
- return query(t[p].l, l, mid, f);
- else
- return query(t[p].r, mid + 1, r, f);
- }
-
- signed main()
- {
- TLE();
- int n;
- cin >> n;
- int cnt = 0;
- for (int i = 1; i <= n; i++)
- {
- char op[2], c[2];
- int x;
- cin >> op;
- if (*op == 'T')
- {
- cin >> c;
- ++cnt;
- len[cnt] = len[cnt - 1] + 1;
- root[cnt] = insert(root[cnt - 1], 1, n, len[cnt], *c);
- }
- else if (*op == 'Q')
- {
- cin >> x;
- cout << query(root[cnt], 1, n, x) << endl;
- }
- else if (*op == 'U')
- {
- cin >> x;
- ++cnt;
- root[cnt] = root[cnt - x - 1];
- len[cnt] = len[cnt - x - 1];
- }
- }
- return 0;
- }