packagecom.thealgorithms.ciphers;importjava.math.BigInteger;importjava.util.Scanner;publicclass AES {/**
* Precalculated values for x to the power of 2 in Rijndaels galois field.
* Used as 'RCON' during the key expansion.
*/privatestaticfinalint[] RCON ={0x8d,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,0xb3,0x7d,0xfa,0xef,0xc5,0x91,0x39,0x72,0xe4,0xd3,0xbd,0x61,0xc2,0x9f,0x25,0x4a,0x94,0x33,0x66,0xcc,0x83,0x1d,0x3a,0x74,0xe8,0xcb,0x8d,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,0xb3,0x7d,0xfa,0xef,0xc5,0x91,0x39,0x72,0xe4,0xd3,0xbd,0x61,0xc2,0x9f,0x25,0x4a,0x94,0x33,0x66,0xcc,0x83,0x1d,0x3a,0x74,0xe8,0xcb,0x8d,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,0xb3,0x7d,0xfa,0xef,0xc5,0x91,0x39,0x72,0xe4,0xd3,0xbd,0x61,0xc2,0x9f,0x25,0x4a,0x94,0x33,0x66,0xcc,0x83,0x1d,0x3a,0x74,0xe8,0xcb,0x8d,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,0xb3,0x7d,0xfa,0xef,0xc5,0x91,0x39,0x72,0xe4,0xd3,0xbd,0x61,0xc2,0x9f,0x25,0x4a,0x94,0x33,0x66,0xcc,0x83,0x1d,0x3a,0x74,0xe8,0xcb,0x8d,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,0xb3,0x7d,0xfa,0xef,0xc5,0x91,0x39,0x72,0xe4,0xd3,0xbd,0x61,0xc2,0x9f,0x25,0x4a,0x94,0x33,0x66,0xcc,0x83,0x1d,0x3a,0x74,0xe8,0xcb,0x8d};/**
* Rijndael S-box Substitution table used for encryption in the subBytes
* step, as well as the key expansion.
*/privatestaticfinalint[] SBOX ={0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16};/**
* Inverse Rijndael S-box Substitution table used for decryption in the
* subBytesDec step.
*/privatestaticfinalint[] INVERSE_SBOX ={0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB,0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB,0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E,0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25,0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92,0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84,0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06,0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B,0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73,0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E,0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B,0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4,0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F,0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF,0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61,0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D};/**
* Precalculated lookup table for galois field multiplication by 2 used in
* the MixColums step during encryption.
*/privatestaticfinalint[] MULT2 ={0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5};/**
* Precalculated lookup table for galois field multiplication by 3 used in
* the MixColums step during encryption.
*/privatestaticfinalint[] MULT3 ={0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a};/**
* Precalculated lookup table for galois field multiplication by 9 used in
* the MixColums step during decryption.
*/privatestaticfinalint[] MULT9 ={0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46};/**
* Precalculated lookup table for galois field multiplication by 11 used in
* the MixColums step during decryption.
*/privatestaticfinalint[] MULT11 ={0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3};/**
* Precalculated lookup table for galois field multiplication by 13 used in
* the MixColums step during decryption.
*/privatestaticfinalint[] MULT13 ={0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97};/**
* Precalculated lookup table for galois field multiplication by 14 used in
* the MixColums step during decryption.
*/privatestaticfinalint[] MULT14 ={0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d};/**
* Subroutine of the Rijndael key expansion.
*/publicstaticBigIntegerscheduleCore(BigInteger t,int rconCounter){StringBuilder rBytes =newStringBuilder(t.toString(16));// Add zero paddingwhile(rBytes.length()<8){
rBytes.insert(0,"0");}// rotate the first 16 bits to the backString rotatingBytes = rBytes.substring(0,2);String fixedBytes = rBytes.substring(2);
rBytes =newStringBuilder(fixedBytes + rotatingBytes);// apply S-Box to all 8-Bit Substringsfor(int i =0; i <4; i++){StringBuilder currentByteBits =newStringBuilder(rBytes.substring(i *2,(i +1)*2));int currentByte =Integer.parseInt(currentByteBits.toString(),16);
currentByte = SBOX[currentByte];// add the current RCON value to the first byteif(i ==0){
currentByte = currentByte ^ RCON[rconCounter];}
currentByteBits =newStringBuilder(Integer.toHexString(currentByte));// Add zero paddingwhile(currentByteBits.length()<2){
currentByteBits.insert(0,'0');}// replace bytes in original string
rBytes =newStringBuilder(rBytes.substring(0, i *2)+ currentByteBits + rBytes.substring((i +1)*2));}// t = new BigInteger(rBytes, 16);// return t;returnnewBigInteger(rBytes.toString(),16);}/**
* Returns an array of 10 + 1 round keys that are calculated by using
* Rijndael key schedule
*
* @return array of 10 + 1 round keys
*/publicstaticBigInteger[]keyExpansion(BigInteger initialKey){BigInteger[] roundKeys ={
initialKey,newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),newBigInteger("0"),};// initialize rcon iterationint rconCounter =1;for(int i =1; i <11; i++){// get the previous 32 bits the keyBigInteger t = roundKeys[i -1].remainder(newBigInteger("100000000",16));// split previous key into 8-bit segmentsBigInteger[] prevKey ={
roundKeys[i -1].remainder(newBigInteger("100000000",16)),
roundKeys[i -1].remainder(newBigInteger("10000000000000000",16)).divide(newBigInteger("100000000",16)),
roundKeys[i -1].remainder(newBigInteger("1000000000000000000000000",16)).divide(newBigInteger("10000000000000000",16)),
roundKeys[i -1].divide(newBigInteger("1000000000000000000000000",16)),};// run schedule core
t =scheduleCore(t, rconCounter);
rconCounter +=1;// Calculate partial round keyBigInteger t0 = t.xor(prevKey[3]);BigInteger t1 = t0.xor(prevKey[2]);BigInteger t2 = t1.xor(prevKey[1]);BigInteger t3 = t2.xor(prevKey[0]);// Join round key segments
t2 = t2.multiply(newBigInteger("100000000",16));
t1 = t1.multiply(newBigInteger("10000000000000000",16));
t0 = t0.multiply(newBigInteger("1000000000000000000000000",16));
roundKeys[i]= t0.add(t1).add(t2).add(t3);}return roundKeys;}/**
* representation of the input 128-bit block as an array of 8-bit integers.
*
* @param block of 128-bit integers
* @return array of 8-bit integers
*/publicstaticint[]splitBlockIntoCells(BigInteger block){int[] cells =newint[16];StringBuilder blockBits =newStringBuilder(block.toString(2));// Append leading 0 for full "128-bit" stringwhile(blockBits.length()<128){
blockBits.insert(0,'0');}// split 128 to 8 bit cellsfor(int i =0; i < cells.length; i++){String cellBits = blockBits.substring(8* i,8*(i +1));
cells[i]=Integer.parseInt(cellBits,2);}return cells;}/**
* Returns the 128-bit BigInteger representation of the input of an array of
* 8-bit integers.
*
* @param cells that we need to merge
* @return block of merged cells
*/publicstaticBigIntegermergeCellsIntoBlock(int[] cells){StringBuilder blockBits =newStringBuilder();for(int i =0; i <16; i++){StringBuilder cellBits =newStringBuilder(Integer.toBinaryString(cells[i]));// Append leading 0 for full "8-bit" stringswhile(cellBits.length()<8){
cellBits.insert(0,'0');}
blockBits.append(cellBits);}returnnewBigInteger(blockBits.toString(),2);}/**
* @return ciphertext XOR key
*/publicstaticBigIntegeraddRoundKey(BigInteger ciphertext,BigInteger key){return ciphertext.xor(key);}/**
* substitutes 8-Bit long substrings of the input using the S-Box and
* returns the result.
*
* @return subtraction Output
*/publicstaticBigIntegersubBytes(BigInteger ciphertext){int[] cells =splitBlockIntoCells(ciphertext);for(int i =0; i <16; i++){
cells[i]= SBOX[cells[i]];}returnmergeCellsIntoBlock(cells);}/**
* substitutes 8-Bit long substrings of the input using the inverse S-Box
* for decryption and returns the result.
*
* @return subtraction Output
*/publicstaticBigIntegersubBytesDec(BigInteger ciphertext){int[] cells =splitBlockIntoCells(ciphertext);for(int i =0; i <16; i++){
cells[i]= INVERSE_SBOX[cells[i]];}returnmergeCellsIntoBlock(cells);}/**
* Cell permutation step. Shifts cells within the rows of the input and
* returns the result.
*/publicstaticBigIntegershiftRows(BigInteger ciphertext){int[] cells =splitBlockIntoCells(ciphertext);int[] output =newint[16];// do nothing in the first row
output[0]= cells[0];
output[4]= cells[4];
output[8]= cells[8];
output[12]= cells[12];// shift the second row backwards by one cell
output[1]= cells[5];
output[5]= cells[9];
output[9]= cells[13];
output[13]= cells[1];// shift the third row backwards by two cell
output[2]= cells[10];
output[6]= cells[14];
output[10]= cells[2];
output[14]= cells[6];// shift the forth row backwards by tree cell
output[3]= cells[15];
output[7]= cells[3];
output[11]= cells[7];
output[15]= cells[11];returnmergeCellsIntoBlock(output);}/**
* Cell permutation step for decryption . Shifts cells within the rows of
* the input and returns the result.
*/publicstaticBigIntegershiftRowsDec(BigInteger ciphertext){int[] cells =splitBlockIntoCells(ciphertext);int[] output =newint[16];// do nothing in the first row
output[0]= cells[0];
output[4]= cells[4];
output[8]= cells[8];
output[12]= cells[12];// shift the second row forwards by one cell
output[1]= cells[13];
output[5]= cells[1];
output[9]= cells[5];
output[13]= cells[9];// shift the third row forwards by two cell
output[2]= cells[10];
output[6]= cells[14];
output[10]= cells[2];
output[14]= cells[6];// shift the forth row forwards by tree cell
output[3]= cells[7];
output[7]= cells[11];
output[11]= cells[15];
output[15]= cells[3];returnmergeCellsIntoBlock(output);}/**
* Applies the Rijndael MixColumns to the input and returns the result.
*/publicstaticBigIntegermixColumns(BigInteger ciphertext){int[] cells =splitBlockIntoCells(ciphertext);int[] outputCells =newint[16];for(int i =0; i <4; i++){int[] row ={cells[i *4], cells[i *4+1], cells[i *4+2], cells[i *4+3]};
outputCells[i *4]= MULT2[row[0]]^ MULT3[row[1]]^ row[2]^ row[3];
outputCells[i *4+1]= row[0]^ MULT2[row[1]]^ MULT3[row[2]]^ row[3];
outputCells[i *4+2]= row[0]^ row[1]^ MULT2[row[2]]^ MULT3[row[3]];
outputCells[i *4+3]= MULT3[row[0]]^ row[1]^ row[2]^ MULT2[row[3]];}returnmergeCellsIntoBlock(outputCells);}/**
* Applies the inverse Rijndael MixColumns for decryption to the input and
* returns the result.
*/publicstaticBigIntegermixColumnsDec(BigInteger ciphertext){int[] cells =splitBlockIntoCells(ciphertext);int[] outputCells =newint[16];for(int i =0; i <4; i++){int[] row ={cells[i *4], cells[i *4+1], cells[i *4+2], cells[i *4+3]};
outputCells[i *4]= MULT14[row[0]]^ MULT11[row[1]]^ MULT13[row[2]]^ MULT9[row[3]];
outputCells[i *4+1]= MULT9[row[0]]^ MULT14[row[1]]^ MULT11[row[2]]^ MULT13[row[3]];
outputCells[i *4+2]= MULT13[row[0]]^ MULT9[row[1]]^ MULT14[row[2]]^ MULT11[row[3]];
outputCells[i *4+3]= MULT11[row[0]]^ MULT13[row[1]]^ MULT9[row[2]]^ MULT14[row[3]];}returnmergeCellsIntoBlock(outputCells);}/**
* Encrypts the plaintext with the key and returns the result
*
* @param plainText which we want to encrypt
* @param key the key for encrypt
* @return EncryptedText
*/publicstaticBigIntegerencrypt(BigInteger plainText,BigInteger key){BigInteger[] roundKeys =keyExpansion(key);// Initial round
plainText =addRoundKey(plainText, roundKeys[0]);// Main roundsfor(int i =1; i <10; i++){
plainText =subBytes(plainText);
plainText =shiftRows(plainText);
plainText =mixColumns(plainText);
plainText =addRoundKey(plainText, roundKeys[i]);}// Final round
plainText =subBytes(plainText);
plainText =shiftRows(plainText);
plainText =addRoundKey(plainText, roundKeys[10]);return plainText;}/**
* Decrypts the ciphertext with the key and returns the result
*
* @param cipherText The Encrypted text which we want to decrypt
* @return decryptedText
*/publicstaticBigIntegerdecrypt(BigInteger cipherText,BigInteger key){BigInteger[] roundKeys =keyExpansion(key);// Invert final round
cipherText =addRoundKey(cipherText, roundKeys[10]);
cipherText =shiftRowsDec(cipherText);
cipherText =subBytesDec(cipherText);// Invert main roundsfor(int i =9; i >0; i--){
cipherText =addRoundKey(cipherText, roundKeys[i]);
cipherText =mixColumnsDec(cipherText);
cipherText =shiftRowsDec(cipherText);
cipherText =subBytesDec(cipherText);}// Invert initial round
cipherText =addRoundKey(cipherText, roundKeys[0]);return cipherText;}publicstaticvoidmain(String[] args){try(Scanner input =newScanner(System.in)){System.out.println("Enter (e) letter for encrpyt or (d) letter for decrypt :");char choice = input.nextLine().charAt(0);String in;switch(choice){case'E','e'->{System.out.println("Choose a plaintext block (128-Bit Integer in base 16):");
in = input.nextLine();BigInteger plaintext =newBigInteger(in,16);System.out.println("Choose a Key (128-Bit Integer in base 16):");
in = input.nextLine();BigInteger encryptionKey =newBigInteger(in,16);System.out.println("The encrypted message is: \n"+encrypt(plaintext, encryptionKey).toString(16));}case'D','d'->{System.out.println("Enter your ciphertext block (128-Bit Integer in base 16):");
in = input.nextLine();BigInteger ciphertext =newBigInteger(in,16);System.out.println("Choose a Key (128-Bit Integer in base 16):");
in = input.nextLine();BigInteger decryptionKey =newBigInteger(in,16);System.out.println("The deciphered message is:\n"+decrypt(ciphertext, decryptionKey).toString(16));}default->System.out.println("** End **");}}}}