• 极智AI | 全场景算力产品矩阵 看算能系列AI产品


    欢迎关注我的公众号 [极智视界],获取我的更多笔记分享

      大家好,我是极智视界,本文介绍一下 算能系列 AI 产品。

      算能,你也可以理解为 比特大陆,拥有全场景的 AI 产品,这个全场景主要是包括 处理器AI卡服务器

    • 处理器系列:BM1684 TPU处理器、BM1682 TPU处理器;
    • AI卡系列: SC5+ 智算卡、SC3 智算卡;
    • 服务器系列:SG6 智算服务器、SE5 微服务器、SE3 微服务器;

    1 处理器系列

      BM1684 是 BM1682 的升级版,BM1684 全称为 张量计算处理器 BM1684,是算能面向深度学习领域推出的第三代张量处理器,性能较上代提升约 6 倍。这里指的 上代 即为 BM1682。既然讲到性能,就直接上数据把:

    指标BM1684BM1682
    INT8 算力17.6 TOPS-
    FP32 算力2.2 TFLOPS3 TFLOPS
    视频解码32 路高清硬解码8 路高清硬解码
    片内SRAM容量32 MBytes16 MBytes
    运算单元1024 个2048 个

      BM1684 相较于 BM1682 最显著的改善是 开始支持 INT8 运算,在 比特大陆 SDK 工具链 (BMNNSDK, BITMAIN Neural Network SDK) 中有 开启winograd加速算力不开启winograd加速算力,两者相差悬殊,而 比特大陆中的 开启winograd加速 也只是针对 INT8,而 BM1682 没有 INT8,所以 BM1682 只能 望尘莫及

    其他不多说了,来看看 BM1684 的庐山真面目


    2 AI卡系列

      芯片 / 处理器层是比较底层的,AI卡相较于 处理器,更上一层。所以这里的 SC5+ 智算卡 和 SC3 智算卡的区别,也主要是 其内置芯片的不同,SC5+ 智算卡内置 三颗 BM1684 芯片,而 SC3 智算卡内置 一颗 BM1682 芯片,所以也可以理解为 SC5+ 是 SC3 的新一代卡。来看两张卡的性能参数对比:

    指标SC5+SC3
    芯片三颗BM1684一颗BM1682
    INT8 算力105.6 TOS (Winograd Enable)/52.8 TOS (Winograd Disable)-
    FP32 算力6.6 TFOPS3 TFOPS
    显存36 G8G
    功耗75 W65 W

      可以看到 SC5+ 升级的不是一丁半点,在 算力显存 方面都有巨大的升级,特别是 INT8算力显存 两个方面,其中 INT8 算力主要源于 BM1684 的能力。

    算能还是主要面向算法推理场景,所以卡也都是面向 AI应用部署/落地,没有全高全长的训练卡。来看下 SC5+ 的样子


    3 服务器系列

      服务器是面向应用落地的 终极产品硬件形态,所以服务器也是凌驾于 AI卡 和 芯片之上,三者关系从上往下基本就是 ==> 服务器 > AI 卡 > 芯片/处理器。算能的服务器形态也比较丰富,主要有面向 小云场景 的 SG6 服务器,面向 边缘场景 的 SE5 和 SE3。

    小云场景 的 SG6 服务器 (PCIE卡槽的机器),又可以分为 SG6-10-B22SG6-06-A22。其中 SG6-10-B22 可搭载 30 颗 BM1684,什么意思呢,一张 SC5+ 算力卡内置 3 颗 BM1684,也就是说 SG6-10-B22 最多可以插 10 张 SC5+ 算力卡。而不同的是 SG6-06-A22 只能搭载 18 颗 BM1684,也就是最多插 6 张 SC5+ 算力卡。就这么点区别,然后整台服务器的算力啥的,简单粗暴的估算方法就是 你插了几张SC5+卡,就是几倍的能力

    来看下 SG6-10-B22 的样子

    边缘场景 的 SE5 微服务器 和 SE3 微服务器,其主要区别也是内置了不同的芯片,SE5 内置一颗 BM1684,SE3 内置一颗 BM1682,所以他们的性能参数也可以直接参考 单芯片/单处理器 的性能,无需多说。从产品角度来说,SE5 的算力相对比较高,可以用于 10路~16路 左右的视频解析;SE3 则算力低些,可用于 4 路左右的视频解析,偏 端场景

    来看下 SE5 的样子

      综上可以看到,算能的 AI 产品是比较丰富的,覆盖了 云、边、端,而且 芯片自研,还是比较赞的。需要注意的一点是,你不要看 BM1684 和 BM1682 从名字上看起来好像差不多,实际它们走不同的 SDK (BM1682 用老SDK,功能支持不完善),API 接口变化也比较大,所以在算能的不同型号设备上的部署 无法很好地直接切换 ,所以如果你做好了 云端 SC5+ 和 边缘端 SE5 的部署后,想直接切到更低算力的 SE3 上,是需要一定开发周期的。


      好了,以上分享了 算能系列 AI 产品,希望我的分享能对你的学习有一点帮助。


     【公众号传送】

    《极智AI | 全场景算力产品矩阵 看算能系列 AI 产品》


    在这里插入图片描述

    扫描下方二维码即可关注我的微信公众号【极智视界】,获取我的更多经验分享,让我们用极致+极客的心态来迎接AI !

  • 相关阅读:
    [附源码]Python计算机毕业设计Django社区疫情防控信息管理系统
    GO后端开发+VUE实列
    浅析SpringBoot框架常见未授权访问漏洞
    【Elasticsearch教程21】分页查询以及Array数组排序 nested排序 详细案例
    【多线程入门】&线程的三种创建方式&线程的生命周期&并行和并发的区别
    cefsharp 93.1.140 如何在js中暴露c#类
    时序预测 | MATLAB实现ARIMA时间序列预测(GDP预测)
    1027. 最长等差数列
    买卖股票的最佳时机
    天然产物在新冠中的应用潜力 | MedChemExpress
  • 原文地址:https://blog.csdn.net/weixin_42405819/article/details/126232077