关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。切分的目的就在于减少数据库的负担,缩短查询时间。
数据库分布式核心内容无非就是数据切分(Sharding),以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分。
1、IO瓶颈:
磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
2、CPU瓶颈:
SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。
概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。结果:
场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。分析:库多了,io和cpu的压力自然可以成倍缓解。
水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。
概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。结果:
场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
水平切分的优点:
缺点:
概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。结果:
场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
结果:
场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。
垂直切分的优点:
缺点:
基于水平分库分表,拆分策略为常用的hash法。
端上除了partition key只有一个非partition key作为条件查询。
映射法
基因法
写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。
根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。
端上除了partition key不止一个非partition key作为条件查询。
映射法
冗余法
后台除了partition key还有各种非partition key组合条件查询。
NoSQL法
冗余法
基于水平分库分表,拆分策略为常用的hash法。
注:用NoSQL法解决(ES等)。
基于水平分库分表,拆分策略为常用的hash法。