• pytorch常用代码


    pytorch常用代码

    本文代码基于PyTorch 1.0版本,需要用到以下包

    import collections
    import os
    import shutil
    import tqdm
    
    import numpy as np
    import PIL.Image
    import torch
    import torchvision
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    1. 基础配置

    检查PyTorch版本

    torch.__version__               # PyTorch version
    torch.version.cuda              # Corresponding CUDA version
    torch.backends.cudnn.version()  # Corresponding cuDNN version
    torch.cuda.get_device_name(0)   # GPU type
    
    • 1
    • 2
    • 3
    • 4

    更新PyTorch

    PyTorch将被安装在anaconda3/lib/python3.7/site-packages/torch/目录下。

    conda update pytorch torchvision -c pytorch
    
    • 1

    固定随机种子

    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    
    • 1
    • 2

    指定程序运行在特定GPU卡上

    在命令行指定环境变量

    CUDA_VISIBLE_DEVICES=0,1 python train.py
    
    • 1

    或在代码中指定

    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
    
    • 1

    判断是否有CUDA支持

    torch.cuda.is_available()
    
    • 1

    设置为cuDNN benchmark模式

    Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。

    torch.backends.cudnn.benchmark = True
    
    • 1

    如果想要避免这种结果波动,设置

    torch.backends.cudnn.deterministic = True
    
    • 1

    清除GPU存储

    有时Control-C中止运行后GPU存储没有及时释放,需要手动清空。在PyTorch内部可以

    torch.cuda.empty_cache()
    
    • 1

    或在命令行可以先使用ps找到程序的PID,再使用kill结束该进程

    ps aux | grep python
    kill -9 [pid]
    
    • 1
    • 2

    或者直接重置没有被清空的GPU

    nvidia-smi --gpu-reset -i [gpu_id]
    
    • 1

    2. 张量处理

    张量基本信息

    tensor.type()   # Data type
    tensor.size()   # Shape of the tensor. It is a subclass of Python tuple
    tensor.dim()    # Number of dimensions.
    
    • 1
    • 2
    • 3

    数据类型转换

    # Set default tensor type. Float in PyTorch is much faster than double.
    torch.set_default_tensor_type(torch.FloatTensor)
    
    # Type convertions.
    tensor = tensor.cuda()
    tensor = tensor.cpu()
    tensor = tensor.float()
    tensor = tensor.long()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    torch.Tensor与np.ndarray转换

    # torch.Tensor -> np.ndarray.
    ndarray = tensor.cpu().numpy()
    
    # np.ndarray -> torch.Tensor.
    tensor = torch.from_numpy(ndarray).float()
    tensor = torch.from_numpy(ndarray.copy()).float()  # If ndarray has negative stride
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    torch.Tensor与PIL.Image转换

    PyTorch中的张量默认采用N×D×H×W的顺序,并且数据范围在[0, 1],需要进行转置和规范化。

    # torch.Tensor -> PIL.Image.
    image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255
        ).byte().permute(1, 2, 0).cpu().numpy())
    image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way
    
    # PIL.Image -> torch.Tensor.
    tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))
        ).permute(2, 0, 1).float() / 255
    tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path))  # Equivalently way
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    np.ndarray与PIL.Image转换

    # np.ndarray -> PIL.Image.
    image = PIL.Image.fromarray(ndarray.astypde(np.uint8))
    
    # PIL.Image -> np.ndarray.
    ndarray = np.asarray(PIL.Image.open(path))
    
    • 1
    • 2
    • 3
    • 4
    • 5

    从只包含一个元素的张量中提取值

    这在训练时统计loss的变化过程中特别有用。否则这将累积计算图,使GPU存储占用量越来越大。

    value = tensor.item()
    
    • 1

    张量形变

    张量形变常常需要用于将卷积层特征输入全连接层的情形。相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。

    tensor = torch.reshape(tensor, shape)
    
    • 1

    打乱顺序

    tensor = tensor[torch.randperm(tensor.size(0))]  # Shuffle the first dimension
    
    • 1

    水平翻转

    PyTorch不支持tensor[::-1]这样的负步长操作,水平翻转可以用张量索引实现。

    # Assume tensor has shape N*D*H*W.
    tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]
    
    • 1
    • 2

    复制张量

    有三种复制的方式,对应不同的需求。

    # Operation                 |  New/Shared memory | Still in computation graph |
    tensor.clone()            # |        New         |          Yes               |
    tensor.detach()           # |      Shared        |          No                |
    tensor.detach.clone()()   # |        New         |          No                |
    
    • 1
    • 2
    • 3
    • 4

    拼接张量

    注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。例如当参数是3个10×5的张量,torch.cat的结果是30×5的张量,而torch.stack的结果是3×10×5的张量。

    tensor = torch.cat(list_of_tensors, dim=0)
    tensor = torch.stack(list_of_tensors, dim=0)
    
    • 1
    • 2

    将整数标记转换成独热(one-hot)编码

    PyTorch中的标记默认从0开始。

    N = tensor.size(0)
    one_hot = torch.zeros(N, num_classes).long()
    one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
    
    • 1
    • 2
    • 3

    得到非零/零元素

    torch.nonzero(tensor)               # Index of non-zero elements
    torch.nonzero(tensor == 0)          # Index of zero elements
    torch.nonzero(tensor).size(0)       # Number of non-zero elements
    torch.nonzero(tensor == 0).size(0)  # Number of zero elements
    
    • 1
    • 2
    • 3
    • 4

    判断两个张量相等

    torch.allclose(tensor1, tensor2)  # float tensor
    torch.equal(tensor1, tensor2)     # int tensor
    
    • 1
    • 2

    张量扩展

    # Expand tensor of shape 64*512 to shape 64*512*7*7.
    torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
    
    • 1
    • 2

    矩阵乘法

    # Matrix multiplication: (m*n) * (n*p) -> (m*p).
    result = torch.mm(tensor1, tensor2)
    
    # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p).
    result = torch.bmm(tensor1, tensor2)
    
    # Element-wise multiplication.
    result = tensor1 * tensor2
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    计算两组数据之间的两两欧式距离

    # X1 is of shape m*d, X2 is of shape n*d.
    dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))
    
    • 1
    • 2

    3. 模型定义

    卷积层

    最常用的卷积层配置是

    conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
    conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)
    
    • 1
    • 2

    如果卷积层配置比较复杂,不方便计算输出大小时,可以利用如下可视化工具辅助

    Convolution Visualizerezyang.github.io

    GAP(Global average pooling)层

    gap = torch.nn.AdaptiveAvgPool2d(output_size=1)
    
    • 1

    双线性汇合(bilinear pooling)[1]

    X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
    X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
    assert X.size() == (N, D, D)
    X = torch.reshape(X, (N, D * D))
    X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
    X = torch.nn.functional.normalize(X)                  # L2 normalization
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    多卡同步BN(Batch normalization)

    当使用torch.nn.DataParallel将代码运行在多张GPU卡上时,PyTorch的BN层默认操作是各卡上数据独立地计算均值和标准差,同步BN使用所有卡上的数据一起计算BN层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

    vacancy/Synchronized-BatchNorm-PyTorchgithub.com图标

    现在PyTorch官方已经支持同步BN操作

    sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True, 
                                     track_running_stats=True)
    
    • 1
    • 2

    将已有网络的所有BN层改为同步BN层

    def convertBNtoSyncBN(module, process_group=None):
        '''Recursively replace all BN layers to SyncBN layer.
    
        Args:
            module[torch.nn.Module]. Network
        '''
        if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
            sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, 
                                             module.affine, module.track_running_stats, process_group)
            sync_bn.running_mean = module.running_mean
            sync_bn.running_var = module.running_var
            if module.affine:
                sync_bn.weight = module.weight.clone().detach()
                sync_bn.bias = module.bias.clone().detach()
            return sync_bn
        else:
            for name, child_module in module.named_children():
                setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
            return module
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    类似BN滑动平均

    如果要实现类似BN滑动平均的操作,在forward函数中要使用原地(inplace)操作给滑动平均赋值。

    class BN(torch.nn.Module)
        def __init__(self):
            ...
            self.register_buffer('running_mean', torch.zeros(num_features))
    
        def forward(self, X):
            ...
            self.running_mean += momentum * (current - self.running_mean)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    计算模型整体参数量

    num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())
    
    • 1

    类似Keras的model.summary()输出模型信息

    sksq96/pytorch-summarygithub.com图标

    模型权值初始化

    注意model.modules()和model.children()的区别:model.modules()会迭代地遍历模型的所有子层,而model.children()只会遍历模型下的一层。

    # Common practise for initialization.
    for layer in model.modules():
        if isinstance(layer, torch.nn.Conv2d):
            torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                          nonlinearity='relu')
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.BatchNorm2d):
            torch.nn.init.constant_(layer.weight, val=1.0)
            torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.Linear):
            torch.nn.init.xavier_normal_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
    
    # Initialization with given tensor.
    layer.weight = torch.nn.Parameter(tensor)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    部分层使用预训练模型

    注意如果保存的模型是torch.nn.DataParallel,则当前的模型也需要是torch.nn.DataParallel。torch.nn.DataParallel(model).module == model。

    model.load_state_dict(torch.load('model,pth'), strict=False)
    
    • 1

    将在GPU保存的模型加载到CPU

    model.load_state_dict(torch.load('model,pth', map_location='cpu'))
    
    • 1

    4. 数据准备、特征提取与微调

    图像分块打散(image shuffle)/区域混淆机制(region confusion mechanism,RCM)[2]

    # X is torch.Tensor of size N*D*H*W.
    # Shuffle rows
    Q = (torch.unsqueeze(torch.arange(num_blocks), dim=1) * torch.ones(1, num_blocks).long()
         + torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
    Q = torch.argsort(Q, dim=0)
    assert Q.size() == (num_blocks, num_blocks)
    
    X = [torch.chunk(row, chunks=num_blocks, dim=2)
         for row in torch.chunk(X, chunks=num_blocks, dim=1)]
    X = [[X[Q[i, j].item()][j] for j in range(num_blocks)]
         for i in range(num_blocks)]
    
    # Shulle columns.
    Q = (torch.ones(num_blocks, 1).long() * torch.unsqueeze(torch.arange(num_blocks), dim=0)
         + torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
    Q = torch.argsort(Q, dim=1)
    assert Q.size() == (num_blocks, num_blocks)
    X = [[X[i][Q[i, j].item()] for j in range(num_blocks)]
         for i in range(num_blocks)]
    
    Y = torch.cat([torch.cat(row, dim=2) for row in X], dim=1)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    得到视频数据基本信息

    import cv2
    video = cv2.VideoCapture(mp4_path)
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(video.get(cv2.CAP_PROP_FPS))
    video.release()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    TSN每段(segment)采样一帧视频[3]

    K = self._num_segments
    if is_train:
        if num_frames > K:
            # Random index for each segment.
            frame_indices = torch.randint(
                high=num_frames // K, size=(K,), dtype=torch.long)
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.randint(
                high=num_frames, size=(K - num_frames,), dtype=torch.long)
            frame_indices = torch.sort(torch.cat((
                torch.arange(num_frames), frame_indices)))[0]
    else:
        if num_frames > K:
            # Middle index for each segment.
            frame_indices = num_frames / K // 2
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.sort(torch.cat((                              
                torch.arange(num_frames), torch.arange(K - num_frames))))[0]
    assert frame_indices.size() == (K,)
    return [frame_indices[i] for i in range(K)]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    提取ImageNet预训练模型某层的卷积特征

    # VGG-16 relu5-3 feature.
    model = torchvision.models.vgg16(pretrained=True).features[:-1]
    # VGG-16 pool5 feature.
    model = torchvision.models.vgg16(pretrained=True).features
    # VGG-16 fc7 feature.
    model = torchvision.models.vgg16(pretrained=True)
    model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
    # ResNet GAP feature.
    model = torchvision.models.resnet18(pretrained=True)
    model = torch.nn.Sequential(collections.OrderedDict(
        list(model.named_children())[:-1]))
    
    with torch.no_grad():
        model.eval()
        conv_representation = model(image)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    提取ImageNet预训练模型多层的卷积特征

    class FeatureExtractor(torch.nn.Module):
        """Helper class to extract several convolution features from the given
        pre-trained model.
    
        Attributes:
            _model, torch.nn.Module.
            _layers_to_extract, list or set
    
        Example:
            >>> model = torchvision.models.resnet152(pretrained=True)
            >>> model = torch.nn.Sequential(collections.OrderedDict(
                    list(model.named_children())[:-1]))
            >>> conv_representation = FeatureExtractor(
                    pretrained_model=model,
                    layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
        """
        def __init__(self, pretrained_model, layers_to_extract):
            torch.nn.Module.__init__(self)
            self._model = pretrained_model
            self._model.eval()
            self._layers_to_extract = set(layers_to_extract)
        
        def forward(self, x):
            with torch.no_grad():
                conv_representation = []
                for name, layer in self._model.named_children():
                    x = layer(x)
                    if name in self._layers_to_extract:
                        conv_representation.append(x)
                return conv_representation
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    其他预训练模型

    Cadene/pretrained-models.pytorchgithub.com图标

    微调全连接层

    model = torchvision.models.resnet18(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False
    model.fc = nn.Linear(512, 100)  # Replace the last fc layer
    optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
    
    • 1
    • 2
    • 3
    • 4
    • 5

    以较大学习率微调全连接层,较小学习率微调卷积层

    model = torchvision.models.resnet18(pretrained=True)
    finetuned_parameters = list(map(id, model.fc.parameters()))
    conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
    parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
                  {'params': model.fc.parameters()}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    5. 模型训练

    常用训练和验证数据预处理

    其中ToTensor操作会将PIL.Image或形状为H×W×D,数值范围为[0, 255]的np.ndarray转换为形状为D×H×W,数值范围为[0.0, 1.0]的torch.Tensor。

    train_transform = torchvision.transforms.Compose([
        torchvision.transforms.RandomResizedCrop(size=224,
                                                 scale=(0.08, 1.0)),
        torchvision.transforms.RandomHorizontalFlip(),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
     ])
     val_transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize(256),
        torchvision.transforms.CenterCrop(224),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
    ])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    训练基本代码框架

    for t in epoch(80):
        for images, labels in tqdm.tqdm(train_loader, desc='Epoch %3d' % (t + 1)):
            images, labels = images.cuda(), labels.cuda()
            scores = model(images)
            loss = loss_function(scores, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    标记平滑(label smoothing)[4]

    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
        N = labels.size(0)
        # C is the number of classes.
        smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
        smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
    
        score = model(images)
        log_prob = torch.nn.functional.log_softmax(score, dim=1)
        loss = -torch.sum(log_prob * smoothed_labels) / N
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    Mixup[5]

    beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
    
        # Mixup images.
        lambda_ = beta_distribution.sample([]).item()
        index = torch.randperm(images.size(0)).cuda()
        mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
    
        # Mixup loss.    
        scores = model(mixed_images)
        loss = (lambda_ * loss_function(scores, labels) 
                + (1 - lambda_) * loss_function(scores, labels[index]))
    
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    L1正则化

    l1_regularization = torch.nn.L1Loss(reduction='sum')
    loss = ...  # Standard cross-entropy loss
    for param in model.parameters():
        loss += lambda_ * torch.sum(torch.abs(param))
    loss.backward()
    
    • 1
    • 2
    • 3
    • 4
    • 5

    不对偏置项进行L2正则化/权值衰减(weight decay)

    bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
    others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
    parameters = [{'parameters': bias_list, 'weight_decay': 0},                
                  {'parameters': others_list}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
    
    • 1
    • 2
    • 3
    • 4
    • 5

    梯度裁剪(gradient clipping)

    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
    
    • 1

    计算Softmax输出的准确率

    score = model(images)
    prediction = torch.argmax(score, dim=1)
    num_correct = torch.sum(prediction == labels).item()
    accuruacy = num_correct / labels.size(0)
    
    • 1
    • 2
    • 3
    • 4

    可视化模型前馈的计算图

    szagoruyko/pytorchvizgithub.com图标

    可视化学习曲线

    有Facebook自己开发的Visdom和Tensorboard(仍处于实验阶段)两个选择。

    facebookresearch/visdomgithub.com图标

    torch.utils.tensorboard - PyTorch master documentationpytorch.org

    # Example using Visdom.
    vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False)
    assert self._visdom.check_connection()
    self._visdom.close()
    options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])(
        loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True},
        acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True},
        lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True})
    
    for t in epoch(80):
        tran(...)
        val(...)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),
                 name='train', win='Loss', update='append', opts=options.loss)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),
                 name='val', win='Loss', update='append', opts=options.loss)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),
                 name='train', win='Accuracy', update='append', opts=options.acc)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),
                 name='val', win='Accuracy', update='append', opts=options.acc)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),
                 win='Learning rate', update='append', opts=options.lr)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    得到当前学习率

    # If there is one global learning rate (which is the common case).
    lr = next(iter(optimizer.param_groups))['lr']
    
    # If there are multiple learning rates for different layers.
    all_lr = []
    for param_group in optimizer.param_groups:
        all_lr.append(param_group['lr'])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    学习率衰减

    # Reduce learning rate when validation accuarcy plateau.
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
    for t in range(0, 80):
        train(...); val(...)
        scheduler.step(val_acc)
    
    # Cosine annealing learning rate.
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
    # Reduce learning rate by 10 at given epochs.
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
    for t in range(0, 80):
        scheduler.step()    
        train(...); val(...)
    
    # Learning rate warmup by 10 epochs.
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
    for t in range(0, 10):
        scheduler.step()
        train(...); val(...)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    保存与加载断点

    注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

    # Save checkpoint.
    is_best = current_acc > best_acc
    best_acc = max(best_acc, current_acc)
    checkpoint = {
        'best_acc': best_acc,    
        'epoch': t + 1,
        'model': model.state_dict(),
        'optimizer': optimizer.state_dict(),
    }
    model_path = os.path.join('model', 'checkpoint.pth.tar')
    torch.save(checkpoint, model_path)
    if is_best:
        shutil.copy('checkpoint.pth.tar', model_path)
    
    # Load checkpoint.
    if resume:
        model_path = os.path.join('model', 'checkpoint.pth.tar')
        assert os.path.isfile(model_path)
        checkpoint = torch.load(model_path)
        best_acc = checkpoint['best_acc']
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print('Load checkpoint at epoch %d.' % start_epoch)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    计算准确率、查准率(precision)、查全率(recall)

    # data['label'] and data['prediction'] are groundtruth label and prediction 
    # for each image, respectively.
    accuracy = np.mean(data['label'] == data['prediction']) * 100
    
    # Compute recision and recall for each class.
    for c in range(len(num_classes)):
        tp = np.dot((data['label'] == c).astype(int),
                    (data['prediction'] == c).astype(int))
        tp_fp = np.sum(data['prediction'] == c)
        tp_fn = np.sum(data['label'] == c)
        precision = tp / tp_fp * 100
        recall = tp / tp_fn * 100
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    6. 模型测试

    计算每个类别的查准率(precision)、查全率(recall)、F1和总体指标

    import sklearn.metrics
    
    all_label = []
    all_prediction = []
    for images, labels in tqdm.tqdm(data_loader):
         # Data.
         images, labels = images.cuda(), labels.cuda()
         
         # Forward pass.
         score = model(images)
         
         # Save label and predictions.
         prediction = torch.argmax(score, dim=1)
         all_label.append(labels.cpu().numpy())
         all_prediction.append(prediction.cpu().numpy())
    
    # Compute RP and confusion matrix.
    all_label = np.concatenate(all_label)
    assert len(all_label.shape) == 1
    all_prediction = np.concatenate(all_prediction)
    assert all_label.shape == all_prediction.shape
    micro_p, micro_r, micro_f1, _ = sklearn.metrics.precision_recall_fscore_support(
         all_label, all_prediction, average='micro', labels=range(num_classes))
    class_p, class_r, class_f1, class_occurence = sklearn.metrics.precision_recall_fscore_support(
         all_label, all_prediction, average=None, labels=range(num_classes))
    # Ci,j = #{y=i and hat_y=j}
    confusion_mat = sklearn.metrics.confusion_matrix(
         all_label, all_prediction, labels=range(num_classes))
    assert confusion_mat.shape == (num_classes, num_classes)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    将各类结果写入电子表格

    import csv
    
    # Write results onto disk.
    with open(os.path.join(path, filename), 'wt', encoding='utf-8') as f:
         f = csv.writer(f)
         f.writerow(['Class', 'Label', '# occurence', 'Precision', 'Recall', 'F1',
                     'Confused class 1', 'Confused class 2', 'Confused class 3',
                     'Confused 4', 'Confused class 5'])
         for c in range(num_classes):
             index = np.argsort(confusion_mat[:, c])[::-1][:5]
             f.writerow([
                 label2class[c], c, class_occurence[c], '%4.3f' % class_p[c],
                     '%4.3f' % class_r[c], '%4.3f' % class_f1[c],
                     '%s:%d' % (label2class[index[0]], confusion_mat[index[0], c]),
                     '%s:%d' % (label2class[index[1]], confusion_mat[index[1], c]),
                     '%s:%d' % (label2class[index[2]], confusion_mat[index[2], c]),
                     '%s:%d' % (label2class[index[3]], confusion_mat[index[3], c]),
                     '%s:%d' % (label2class[index[4]], confusion_mat[index[4], c])])
             f.writerow(['All', '', np.sum(class_occurence), micro_p, micro_r, micro_f1, 
                         '', '', '', '', ''])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    7. PyTorch其他注意事项

    模型定义

    • 建议有参数的层和汇合(pooling)层使用torch.nn模块定义,激活函数直接使用torch.nn.functional。torch.nn模块和torch.nn.functional的区别在于,torch.nn模块在计算时底层调用了torch.nn.functional,但torch.nn模块包括该层参数,还可以应对训练和测试两种网络状态。使用torch.nn.functional时要注意网络状态,如
    def forward(self, x):
        ...
        x = torch.nn.functional.dropout(x, p=0.5, training=self.training)
    
    • 1
    • 2
    • 3
    • model(x)前用model.train()和model.eval()切换网络状态。
    • 不需要计算梯度的代码块用with torch.no_grad()包含起来。model.eval()和torch.no*_*grad()的区别在于,model.eval()是将网络切换为测试状态,例如BN和随机失活(dropout)在训练和测试阶段使用不同的计算方法。torch.no_grad()是关闭PyTorch张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行loss.backward()。
    • torch.nn.CrossEntropyLoss的输入不需要经过Softmax。torch.nn.CrossEntropyLoss等价于torch.nn.functional.log_softmax + torch.nn.NLLLoss。
    • loss.backward()前用optimizer.zero_grad()清除累积梯度。optimizer.zero_grad()和model.zero_grad()效果一样。

    PyTorch性能与调试

    • torch.utils.data.DataLoader中尽量设置pin_memory=True,对特别小的数据集如MNIST设置pin_memory=False反而更快一些。num_workers的设置需要在实验中找到最快的取值。
    • 用del及时删除不用的中间变量,节约GPU存储。
    • 使用inplace操作可节约GPU存储,如
    x = torch.nn.functional.relu(x, inplace=True)
    
    • 1

    此外,还可以通过torch.utils.checkpoint前向传播时只保留一部分中间结果来节约GPU存储使用,在反向传播时需要的内容从最近中间结果中计算得到。

    • 减少CPU和GPU之间的数据传输。例如如果你想知道一个epoch中每个mini-batch的loss和准确率,先将它们累积在GPU中等一个epoch结束之后一起传输回CPU会比每个mini-batch都进行一次GPU到CPU的传输更快。
    • 使用半精度浮点数half()会有一定的速度提升,具体效率依赖于GPU型号。需要小心数值精度过低带来的稳定性问题。
    • 时常使用assert tensor.size() == (N, D, H, W)作为调试手段,确保张量维度和你设想中一致。
    • 除了标记y外,尽量少使用一维张量,使用n*1的二维张量代替,可以避免一些意想不到的一维张量计算结果。
    • 统计代码各部分耗时
    with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
        ...
    print(profile)
    
    • 1
    • 2
    • 3

    或者在命令行运行

    python -m torch.utils.bottleneck main.py
    
    • 1

    参考资料

    参考

    1. ^T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition. In ICCV, 2015.
    2. ^Y. Chen, Y. Bai, W. Zhang, and T. Mei. Destruction and construction learning for fine-grained image recognition. In CVPR, 2019.
    3. ^L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool. Temporal segment networks: Towards good practices for deep action recognition. In ECCV, 2016.
    4. ^C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna: Rethinking the Inception architecture for computer vision. In CVPR, 2016.
    5. ^H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In ICLR, 2018.
  • 相关阅读:
    还在用饼状图?来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)
    GPS 数据中的精度因子(DOP)与协方差之间的关系 (参考链接)
    一款后台管理框架的年终总结
    浅谈Spring中的IOC和DI
    解读提示工程(Prompt Engineering)
    Docker:学习笔记【1】
    2023年【山东省安全员A证】考试题及山东省安全员A证免费试题
    基于Java的宠物医院管理系统设计与实现(源码+lw+部署文档+讲解等)
    SQL进阶 - SQL的编程规范
    Vue 3.3.6 发布,得益于WeakMap,它更快了
  • 原文地址:https://blog.csdn.net/weixin_45508265/article/details/126203803