多体系统动力学形成了多种建模和分析的方法,早期的动力学研究主要包括牛顿-欧拉 (Newton-Euler) 矢量力学方法和基于拉格朗日 (Lagrange) 方程的分析力学方法。这种方法对于解决自由度较少的简单刚体系统,其方程数目比较少,计算量也比较小,比较容易。但是,对于复杂的刚体系统,随着自由度的增加,方程数目会急剧增加,计算量增大。
随着时代的发展,计算机技术得到了突飞猛进的进步,虽然可以利用计算机编程求解出动力学方程组,但是,对于求解下一时刻的关节角速度需要合适的数值积分方法,而且需要编写程序。虽然这种方法可以求解出方程的解,但是,由于这种编程方法不具有通用性,针对每个具体问题,都需要编程求解,效率比较低。因此,如果能在动力学建模的同时就考虑其计算问题,并且在建模过程中考虑其建模和求解的通用性,就能较好的解决此问题。其中,比较著名的方法有 Kane 方法、变分方法、 Roberson-Wittenburg 方法、和旋量方法等多体动力学研究方法。
牛顿-欧拉方法是最开始使用的动力学建模分析方法,由于牛顿方程描述了平移刚体所受的外力、质量和质心加速度之间的关系,而欧拉方程描述了旋转刚体所受外力矩、角加速度、角速度和惯性张量之间的关系,因此可以使用牛顿-欧拉方程描述刚体的力、惯量和加速度之间的关系,建立刚体的动力学方程。
牛顿方程 (刚体平移): 外力、质量、质心加速度
欧拉方程 (刚体旋转): 力矩、角加速度、角速度、惯性张量
此方法分析了系统中每个刚体的受力情况,因此物理意义明确,表达了系统完整的受力关系。对于刚体数目较少时,计算量较小,但是随着刚体数目的增多,方程数目会增加,导致计算量较大,从而使得计算效率变低。
关于牛顿-欧拉法的总结具体如下:
拉格朗日方程是另一种经典的动力学建模方法,牛顿-欧拉方程可以被认为是一种解决动力学问题的力平衡方法,而拉格朗日方程则是采用另外一种思路,它以系统的能量为基础建立起动力学模型。
在建模过程中不同于牛顿-欧拉方法,它可以避免内部刚体之间出现的作用力,简化了建模过程。缺点是其物理意义不明确,而且对于复杂系统,拉格朗日函数的微分运算将变得十分繁琐。
机器人动力学建模方法分类
力学量和运动量之间的关系