• [iOS]-NSOperation、NSOperationQueue


    参考的博客:

    iOS多线程:『NSOperation、NSOperationQueue』详尽总结
    iOS探索 多线程面试题分析

    NSOperation、NSOperationQueue 简介

    NSOperation、NSOperationQueue 是苹果提供给我们的一套多线程解决方案。实际上 NSOperation、NSOperationQueue 是基于 GCD 更高一层的封装,完全面向对象。但是比 GCD 更简单易用、代码可读性也更高。

    为什么要使用 NSOperation、NSOperationQueue?

    1. 可添加完成的代码块,在操作完成后执行。
    2. 可以添加操作之间的依赖关系,方便的控制执行顺序。
    3. 可以设定操作执行的优先级。
    4. 可以很方便的取消一个操作的执行。
    5. 使用 KVO 观察对操作执行状态的更改:isExecuteing、isFinished、isCancelled

    NSOperation、NSOperationQueue 操作和操作队列

    既然是基于 GCD 的更高一层的封装。那么,GCD 中的一些概念同样适用于 NSOperation、NSOperationQueue。在 NSOperation、NSOperationQueue 中也有类似的任务(操作) 和 队列(操作队列) 的概念。

    • 操作(Operation):
      • 执行操作的意思,换句话说就是你在线程中执行的那段代码。
      • GCD 中是放在 block 中的。在 NSOperation 中,我们使用 NSOperation 子类 NSInvocationOperation、NSBlockOperation,或者自定义子类来封装操作。
    • 操作队列(Operation Queues):
      • 这里的队列指操作队列,即用来存放操作的队列。不同于 GCD 中的调度队列 FIFO(先进先出)的原则。NSOperationQueue 对于添加到队列中的操作,首先进入准备就绪的状态(就绪状态取决于操作之间的依赖关系),然后进入就绪状态的操作的开始执行顺序(非结束执行顺序)由操作之间相对的优先级决定(优先级是操作对象自身的属性)。
      • 操作队列通过设置 最大并发操作数(maxConcurrentOperationCount) 来控制并发、串行。
      • NSOperationQueue 为我们提供了两种不同类型的队列:主队列和自定义队列。主队列运行在主线程之上,而自定义队列在后台执行。

    NSOperation、NSOperationQueue 使用步骤

    NSOperation 需要配合 NSOperationQueue 来实现多线程。因为默认情况下,NSOperation 单独使用时系统同步执行操作,配合 NSOperationQueue 我们能更好的实现异步执行。
    NSOperation 实现多线程的使用步骤分为三步:

    1. 创建操作:先将需要执行的操作封装到一个 NSOperation 对象中。
    2. 创建队列:创建 NSOperationQueue 对象。
    3. 将操作加入到队列中:将 NSOperation 对象添加到 NSOperationQueue 对象中。

    之后呢,系统就会自动将 NSOperationQueue 中的 NSOperation 取出来,在新线程中执行操作。
    下面我们来学习下 NSOperationNSOperationQueue 的基本使用。

    NSOperation 和 NSOperationQueue 基本使用

    创建操作

    NSOperation 是个抽象类,不能用来封装操作。我们只有使用它的子类来封装操作。我们有三种方式来封装操作。

    1. 使用子类 NSInvocationOperation
    2. 使用子类 NSBlockOperation
    3. 自定义继承自 NSOperation 的子类,通过实现内部相应的方法来封装操作。

    在不使用 NSOperationQueue,单独使用 NSOperation 的情况下系统同步执行操作,下面我们学习以下操作的三种创建方式。

    使用子类 NSInvocationOperation

    //使用子类 NSInvocationOperation
    - (void)useInvocationOperation {
    
        NSLog(@"----%@", [NSThread currentThread]); // 打印当前线程
        
        // 1.创建 NSInvocationOperation 对象
        NSInvocationOperation *op = [[NSInvocationOperation alloc] initWithTarget:self selector:@selector(task1) object:nil];
    
        // 2.调用 start 方法开始执行操作
        [op start];
    }
    
    /**
     * 任务1
     */
    - (void)task1 {
        for (int i = 0; i < 2; i++) {
            [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
            NSLog(@"%d---%@", i, [NSThread currentThread]); // 打印当前线程
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    运行结果:
    请添加图片描述

    • 可以看到:在没有使用 NSOperationQueue、在主线程中单独使用使用子类 NSInvocationOperation 执行一个操作的情况下,操作是在当前线程执行的,并没有开启新线程。

    如果在其他线程中执行操作,则打印结果为其他线程。

    // 在其他线程使用子类 NSInvocationOperation
    [NSThread detachNewThreadSelector:@selector(useInvocationOperation) toTarget:self withObject:nil];
    
    • 1
    • 2

    运行结果如下:
    请添加图片描述

    • 可以看到:在其他线程中单独使用子类 NSInvocationOperation,操作是在当前调用的其他线程执行的,并没有开启新线程。

    下边再来看看 NSBlockOperation

    使用子类 NSBlockOperation

    /**
     * 使用子类 NSBlockOperation
     */
    - (void)useBlockOperation {
    
        NSLog(@"----%@", [NSThread currentThread]); // 打印当前线程
        
        // 1.创建 NSBlockOperation 对象
        NSBlockOperation *op = [NSBlockOperation blockOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"%d---%@", i, [NSThread currentThread]); // 打印当前线程
            }
        }];
    
        // 2.调用 start 方法开始执行操作
        [op start];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    运行结果如下:
    请添加图片描述

    • 可以看到:在没有使用 NSOperationQueue、在主线程中单独使用 NSBlockOperation 执行一个操作的情况下,操作是在当前线程执行的,并没有开启新线程。

    注意: 和上边 NSInvocationOperation 使用一样。因为代码是在主线程中调用的,所以打印结果为主线程。如果在其他线程中执行操作,则打印结果为其他线程

    但是,NSBlockOperation 还提供了一个方法 addExecutionBlock:,通过 addExecutionBlock: 就可以为 NSBlockOperation 添加额外的操作。这些操作(包括 blockOperationWithBlock 中的操作)可以在不同的线程中同时(并发)执行。只有当所有相关的操作已经完成执行时,才视为完成。

    如果添加的操作多的话, blockOperationWithBlock: 中的操作也可能会在其他线程(非当前线程)中执行,这是由系统决定的,并不是说添加到 blockOperationWithBlock: 中的操作一定会在当前线程中执行。(可以使用 addExecutionBlock: 多添加几个操作试试):

    /**
     * 使用子类 NSBlockOperation
     * 调用方法 AddExecutionBlock:
     */
    - (void)useBlockOperationAddExecutionBlock {
    
        // 1.创建 NSBlockOperation 对象
        NSBlockOperation *op = [NSBlockOperation blockOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"1---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
    
        // 2.添加额外的操作
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"2---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"3---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"4---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"5---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"6---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"7---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"8---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
    
        // 3.调用 start 方法开始执行操作
        [op start];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61

    运行结果如下:
    请添加图片描述

    • 可以看出:使用子类 NSBlockOperation,并调用方法 AddExecutionBlock: 的情况下,blockOperationWithBlock:方法中的操作 和 addExecutionBlock: 中的操作是在不同的线程中异步执行的。而且,这次执行结果中 blockOperationWithBlock:方法中的操作也不是在当前线程(主线程)中执行的。从而印证了 blockOperationWithBlock: 中的操作也可能会在其他线程(非当前线程)中执行。

    一般情况下,如果一个 NSBlockOperation 对象封装了多个操作。NSBlockOperation 是否开启新线程,取决于操作的个数。如果添加的操作的个数多,就会自动开启新线程。当然开启的线程数是由系统来决定的。

    使用自定义继承自 NSOperation 的子类

    如果使用子类 NSInvocationOperationNSBlockOperation 不能满足日常需求,我们可以使用自定义继承自 NSOperation 的子类。可以通过重写 main 或者 start 方法 来定义自己的 NSOperation 对象。重写main方法比较简单,我们不需要管理操作的状态属性 isExecutingisFinished。当 main 执行完返回的时候,这个操作就结束了

    先定义一个继承自 NSOperation 的子类,重写main方法。

    // YSCOperation.h 文件
    #import <Foundation/Foundation.h>
    
    NS_ASSUME_NONNULL_BEGIN
    
    @interface KYOperation : NSOperation
    
    @end
    
    NS_ASSUME_NONNULL_END
    
    
    
    //KYOperation.m文件
    #import "KYOperation.h"
    
    @implementation KYOperation
    
    - (void)main {
        if (!self.isCancelled) {
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2];
                NSLog(@"1---%@", [NSThread currentThread]);
            }
        }
    }
    
    @end
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    然后使用的时候导入头文件KYOperation.h

    /**
     * 使用自定义继承自 NSOperation 的子类
     */
    - (void)useCustomOperation {
        // 1.创建 YSCOperation 对象
        KYOperation *op = [[KYOperation alloc] init];
        // 2.调用 start 方法开始执行操作
        [op start];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    运行结果如下:
    请添加图片描述

    • 可以看出:在没有使用 NSOperationQueue、在主线程单独使用自定义继承自 NSOperation 的子类的情况下,是在主线程执行操作,并没有开启新线程。

    另外我们再尝试一下start方法的重写:

    #import <Foundation/Foundation.h>
    
    NS_ASSUME_NONNULL_BEGIN
    
    @interface KYOperation : NSOperation
    
    @end
    
    NS_ASSUME_NONNULL_END
    
    
    
    #import "KYOperation.h"
    
    @implementation KYOperation
    
    - (void)start {
        if (!self.isCancelled) {
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2];
                NSLog(@"1---%@", [NSThread currentThread]);
            }
        }
        [super start];
    }
    
    @end
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    运行结果如下:
    请添加图片描述
    效果同上。

    下边我们来讲讲 NSOperationQueue 的创建。

    创建队列

    NSOperationQueue 一共有两种队列:主队列、自定义队列。其中自定义队列同时包含了串行、并发功能。下边是主队列、自定义队列的基本创建方法和特点。

    • 主队列
      • 凡是添加到主队列中的操作,都会放到主线程中执行
    // 主队列获取方法
    NSOperationQueue *queue = [NSOperationQueue mainQueue];
    
    • 1
    • 2
    • 自定义队列(非主队列)
      • 添加到这种队列中的操作,就会自动放到子线程中执行
      • 同时包含了:串行、并发功能
    // 自定义队列创建方法
    NSOperationQueue *queue = [[NSOperationQueue alloc] init];
    
    • 1
    • 2

    将操作加入到队列中

    上边我们说到 NSOperation 需要配合 NSOperationQueue 来实现多线程

    那么我们需要将创建好的操作加入到队列中去。总共有两种方法:

    1. - (void)addOperation:(NSOperation *)op;
      • 需要先创建操作,再将创建好的操作加入到创建好的队列中去。
    /**
     * 使用 addOperation: 将操作加入到操作队列中
     */
    - (void)addOperationToQueue {
    
        // 1.创建队列
        NSOperationQueue *queue = [[NSOperationQueue alloc] init];
    
        // 2.创建操作
        // 使用 NSInvocationOperation 创建操作1
        NSInvocationOperation *op1 = [[NSInvocationOperation alloc] initWithTarget:self selector:@selector(task1) object:nil];
    
        // 使用 NSInvocationOperation 创建操作2
        NSInvocationOperation *op2 = [[NSInvocationOperation alloc] initWithTarget:self selector:@selector(task2) object:nil];
    
        // 使用 NSBlockOperation 创建操作3
        NSBlockOperation *op3 = [NSBlockOperation blockOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"3---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [op3 addExecutionBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"4---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
    
        // 3.使用 addOperation: 添加所有操作到队列中
        [queue addOperation:op1]; // [op1 start]
        [queue addOperation:op2]; // [op2 start]
        [queue addOperation:op3]; // [op3 start]
    }
    
    /**
     * 任务1
     */
    - (void)task1 {
        for (int i = 0; i < 2; i++) {
            [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
            NSLog(@"任务1:%d---%@", i, [NSThread currentThread]); // 打印当前线程
        }
    }
    
    /**
     * 任务2
     */
    - (void)task2 {
        for (int i = 0; i < 2; i++) {
            [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
            NSLog(@"任务2:%d---%@", i, [NSThread currentThread]); // 打印当前线程
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54

    运行结果如下:
    请添加图片描述

    • 可以看出:使用 NSOperation 子类创建操作,并使用 addOperation: 将操作加入到操作队列后能够开启新线程,进行并发执行。
    1. - (void)addOperationWithBlock:(void (^)(void))block;
      • 无需先创建操作,在 block 中添加操作,直接将包含操作的 block 加入到队列中
    /**
     * 使用 addOperationWithBlock: 将操作加入到操作队列中
     */
    
    - (void)addOperationWithBlockToQueue {
        // 1.创建队列
        NSOperationQueue *queue = [[NSOperationQueue alloc] init];
    
        // 2.使用 addOperationWithBlock: 添加操作到队列中
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"1---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"2---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"3---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    运行结果如下:
    请添加图片描述

    • 可以看出:使用 addOperationWithBlock: 将操作加入到操作队列后能够开启新线程,进行并发执行。

    NSOperationQueue 控制串行执行、并发执行

    之前我们说过,NSOperationQueue 创建的自定义队列同时具有串行、并发功能,上边我们演示了并发功能,那么他的串行功能是如何实现的?

    这里有个关键属性 maxConcurrentOperationCount ,叫做最大并发操作数。用来控制一个特定队列中可以有多少个操作同时参与并发执行。

    注意: 这里 maxConcurrentOperationCount 控制的不是并发线程的数量,而是一个队列中同时能并发执行的最大操作数。而且一个操作也并非只能在一个线程中运行

    • 最大并发操作数:maxConcurrentOperationCount
      • maxConcurrentOperationCount 默认情况下为-1,表示不进行限制,可进行并发执行
      • maxConcurrentOperationCount1时,队列为串行队列。只能串行执行
      • maxConcurrentOperationCount 大于1时,队列为并发队列。操作并发执行,当然这个值不应超过系统限制,即使自己设置一个很大的值,系统也会自动调整为 minmin为自己设定的值,系统设定的默认最大值)
    /**
     * 设置 MaxConcurrentOperationCount(最大并发操作数)
     */
    - (void)setMaxConcurrentOperationCount {
    
        // 1.创建队列
        NSOperationQueue *queue = [[NSOperationQueue alloc] init];
    
        // 2.设置最大并发操作数
        queue.maxConcurrentOperationCount = 1; // 串行队列
    // queue.maxConcurrentOperationCount = 2; // 并发队列
    // queue.maxConcurrentOperationCount = 8; // 并发队列
    
        // 3.添加操作
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"1---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"2---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"3---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        [queue addOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"4---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    最大并发操作数为1的运行结果如下(一个一个执行):
    请添加图片描述
    最大并发操作数为2的运行结果如下(两个两个执行):
    请添加图片描述

    • 可以看出:当最大并发操作数为1时,操作是按顺序串行执行的,并且一个操作完成之后,下一个操作才开始执行。当最大操作并发数为2时,操作是并发执行的,可以同时执行两个操作。而开启线程数量是由系统决定的,不需要我们来管理。

    这样看来要比GCD简单很多

    NSOperation 操作依赖

    NSOperation、NSOperationQueue 最吸引人的地方是它能添加操作之间的依赖关系。通过操作依赖,我们可以很方便的控制操作之间的执行先后顺序。NSOperation 提供了3个接口供我们管理和查看依赖。

    • - (void)addDependency:(NSOperation *)op; 添加依赖,使当前操作依赖于操作 op 的完成。
    • - (void)removeDependency:(NSOperation *)op; 移除依赖,取消当前操作对操作 op 的依赖。
    • @property (readonly, copy) NSArray *dependencies; 在当前操作开始执行之前完成执行的所有操作对象数组。

    当然,我们经常用到的还是添加依赖操作。现在考虑这样的需求,比如说有 A、B 两个操作,其中 A 执行完操作,B 才能执行操作。

    如果使用依赖来处理的话,那么就需要让操作 B 依赖于操作 A。具体代码如下:

    /**
     * 操作依赖
     * 使用方法:addDependency:
     */
    - (void)addDependency {
    
        // 1.创建队列
        NSOperationQueue *queue = [[NSOperationQueue alloc] init];
    
        // 2.创建操作
        NSBlockOperation *op1 = [NSBlockOperation blockOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"1---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
        NSBlockOperation *op2 = [NSBlockOperation blockOperationWithBlock:^{
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"2---%@", [NSThread currentThread]); // 打印当前线程
            }
        }];
    
        // 3.添加依赖
        [op2 addDependency:op1]; // 让op2 依赖于 op1,则先执行op1,在执行op2
    
        // 4.添加操作到队列中
        [queue addOperation:op1];
        [queue addOperation:op2];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    运行结果如下:
    请添加图片描述

    • 可以看到:通过添加操作依赖,无论运行几次,其结果都是 op1 先执行,op2 后执行

    NSOperation 优先级

    NSOperation 提供了queuePriority(优先级)属性,queuePriority属性适用于同一操作队列中的操作,不适用于不同操作队列中的操作。默认情况下,所有新创建的操作对象优先级都是NSOperationQueuePriorityNormal。但是我们可以通过setQueuePriority:方法来改变当前操作在同一队列中的执行优先级。

    // 优先级的取值
    typedef NS_ENUM(NSInteger, NSOperationQueuePriority) {
        NSOperationQueuePriorityVeryLow = -8L,
        NSOperationQueuePriorityLow = -4L,
        NSOperationQueuePriorityNormal = 0,
        NSOperationQueuePriorityHigh = 4,
        NSOperationQueuePriorityVeryHigh = 8
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    上边我们说过:对于添加到队列中的操作,首先进入准备就绪的状态(就绪状态取决于操作之间的依赖关系),然后进入就绪状态的操作的开始执行顺序(非结束执行顺序)由操作之间相对的优先级决定(优先级是操作对象自身的属性)

    那么,什么样的操作才是进入就绪状态的操作呢?

    • 当一个操作的所有依赖都已经完成时,操作对象通常会进入准备就绪状态,等待执行

    举个例子,现在有4个优先级都是 NSOperationQueuePriorityNormal(默认级别)的操作:op1,op2,op3,op4。其中 op3 依赖于 op2op2 依赖于 op1,即 op3 -> op2 -> op1。现在将这4个操作添加到队列中并发执行。

    • 因为 op1op4 都没有需要依赖的操作,所以在 op1op4 执行之前,就是处于准备就绪状态的操作。
    • op3op2 都有依赖的操作(op3 依赖于 op2op2 依赖于 op1),所以 op3op2 都不是准备就绪状态下的操作。

    理解了进入就绪状态的操作,那么我们就理解了queuePriority 属性的作用对象。

    • queuePriority 属性决定了进入准备就绪状态下的操作之间的开始执行顺序。并且,优先级不能取代依赖关系。
    • 如果一个队列中既包含高优先级操作,又包含低优先级操作,并且两个操作都已经准备就绪,那么队列先执行高优先级操作。比如上例中,如果 op1op4 是不同优先级的操作,那么就会先执行优先级高的操作。
    • 如果,一个队列中既包含了准备就绪状态的操作,又包含了未准备就绪的操作,未准备就绪的操作优先级比准备就绪的操作优先级高。那么,虽然准备就绪的操作优先级低,也会优先执行。优先级不能取代依赖关系。如果要控制操作间的启动顺序,则必须使用依赖关系。

    NSOperation、NSOperationQueue 线程间的通信

    iOS 开发过程中,我们一般在主线程里边进行 UI 刷新,例如:点击、滚动、拖拽等事件。我们通常把一些耗时的操作放在其他线程,比如说图片下载、文件上传等耗时操作。而当我们有时候在其他线程完成了耗时操作时,需要回到主线程,那么就用到了线程之间的通讯。

    /**
     * 线程间通信
     */
    - (void)communication {
    
        // 1.创建队列
        NSOperationQueue *queue = [[NSOperationQueue alloc]init];
    
        // 2.添加操作
        [queue addOperationWithBlock:^{
            // 异步进行耗时操作
            for (int i = 0; i < 2; i++) {
                [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                NSLog(@"1---%@", [NSThread currentThread]); // 打印当前线程
            }
    
            // 回到主线程
            [[NSOperationQueue mainQueue] addOperationWithBlock:^{
                // 进行一些 UI 刷新等操作
                for (int i = 0; i < 2; i++) {
                    [NSThread sleepForTimeInterval:2]; // 模拟耗时操作
                    NSLog(@"2---%@", [NSThread currentThread]); // 打印当前线程
                }
            }];
        }];
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    运行结果如下:
    请添加图片描述

    • 可以看到:通过线程间的通信,先在其他线程中执行操作,等操作执行完了之后再回到主线程执行主线程的相应操作

    NSOperation、NSOperationQueue 线程同步和线程安全

    • 线程安全: 如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
      若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作(更改变量),一般都需要考虑线程同步,否则的话就可能影响线程安全。
    • 线程同步: 可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 AA 再继续操作。

    举个简单例子就是:两个人在一起聊天。两个人不能同时说话,避免听不清(操作冲突)。等一个人说完(一个线程结束操作),另一个再说(另一个线程再开始操作)

    下面,我们模拟火车票售卖的方式实现 NSOperation 线程安全和解决线程同步问题。 场景:总共有50张火车票,有两个售卖火车票的窗口,一个是北京火车票售卖窗口,另一个是上海火车票售卖窗口。两个窗口同时售卖火车票,卖完为止

    NSOperation、NSOperationQueue 非线程安全

    先来看看不考虑线程安全的代码:

    /**
     * 非线程安全:不使用 NSLock
     * 初始化火车票数量、卖票窗口(非线程安全)、并开始卖票
     */
    - (void)initTicketStatusNotSave {
        NSLog(@"currentThread---%@",[NSThread currentThread]); // 打印当前线程
    
        self.ticketSurplusCount = 50;
    
        // 1.创建 queue1,queue1 代表北京火车票售卖窗口
        NSOperationQueue *queue1 = [[NSOperationQueue alloc] init];
        queue1.maxConcurrentOperationCount = 1;
    
        // 2.创建 queue2,queue2 代表上海火车票售卖窗口
        NSOperationQueue *queue2 = [[NSOperationQueue alloc] init];
        queue2.maxConcurrentOperationCount = 1;
    
        // 3.创建卖票操作 op1
        __weak typeof(self) weakSelf = self;
        NSBlockOperation *op1 = [NSBlockOperation blockOperationWithBlock:^{
            [weakSelf saleTicketNotSafe];
        }];
    
        // 4.创建卖票操作 op2
        NSBlockOperation *op2 = [NSBlockOperation blockOperationWithBlock:^{
            [weakSelf saleTicketNotSafe];
        }];
    
        // 5.添加操作,开始卖票
        [queue1 addOperation:op1];
        [queue2 addOperation:op2];
    }
    
    /**
     * 售卖火车票(非线程安全)
     */
    - (void)saleTicketNotSafe {
        while (1) {
    
            if (self.ticketSurplusCount > 0) {
                //如果还有票,继续售卖
                self.ticketSurplusCount--;
                NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
                [NSThread sleepForTimeInterval:0.2];
            } else {
                NSLog(@"所有火车票均已售完");
                break;
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50

    运行结果如下:
    请添加图片描述

    • 可以看到:在不考虑线程安全,不使用 NSLock 情况下,得到票数是错乱的,这样显然不符合我们的需求,所以我们需要考虑线程安全问题。

    NSOperation、NSOperationQueue 非线程安全

    线程安全解决方案:可以给线程加锁,在一个线程执行该操作的时候,不允许其他线程进行操作。iOS 实现线程加锁有很多种方式。@synchronized、 NSLock、NSRecursiveLock、NSCondition、NSConditionLock、pthread_mutex、dispatch_semaphore、OSSpinLock、atomic(property) set/ge等等各种方式。这里我们使用 NSLock 对象来解决线程同步问题。NSLock 对象可以通过进入锁时调用 lock 方法,解锁时调用 unlock 方法来保证线程安全。

    考虑线程安全的代码:

    @interface ViewController ()
    @property (nonatomic, assign) NSInteger ticketSurplusCount;
    @property (nonatomic, strong) NSLock *lock;
    @end
    
    
    /**
     * 线程安全:使用 NSLock 加锁
     * 初始化火车票数量、卖票窗口(线程安全)、并开始卖票
     */
    
    - (void)initTicketStatusSave {
        NSLog(@"currentThread---%@",[NSThread currentThread]); // 打印当前线程
    
        self.ticketSurplusCount = 50;
    
        self.lock = [[NSLock alloc] init];  // 初始化 NSLock 对象
    
        // 1.创建 queue1,queue1 代表北京火车票售卖窗口
        NSOperationQueue *queue1 = [[NSOperationQueue alloc] init];
        queue1.maxConcurrentOperationCount = 1;
    
        // 2.创建 queue2,queue2 代表上海火车票售卖窗口
        NSOperationQueue *queue2 = [[NSOperationQueue alloc] init];
        queue2.maxConcurrentOperationCount = 1;
    
        // 3.创建卖票操作 op1
        __weak typeof(self) weakSelf = self;
        NSBlockOperation *op1 = [NSBlockOperation blockOperationWithBlock:^{
            [weakSelf saleTicketSafe];
        }];
    
        // 4.创建卖票操作 op2
        NSBlockOperation *op2 = [NSBlockOperation blockOperationWithBlock:^{
            [weakSelf saleTicketSafe];
        }];
    
        // 5.添加操作,开始卖票
        [queue1 addOperation:op1];
        [queue2 addOperation:op2];
    }
    
    /**
     * 售卖火车票(线程安全)
     */
    - (void)saleTicketSafe {
        while (1) {
    
            // 加锁
            [self.lock lock];
    
            if (self.ticketSurplusCount > 0) {
                //如果还有票,继续售卖
                self.ticketSurplusCount--;
                NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
                [NSThread sleepForTimeInterval:0.2];
            }
    
            // 解锁
            [self.lock unlock];
    
            if (self.ticketSurplusCount <= 0) {
                NSLog(@"所有火车票均已售完");
                break;
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67

    运行结果如下:
    请添加图片描述

    • 可以看出:在考虑了线程安全,使用 NSLock 加锁、解锁机制的情况下,得到的票数是正确的,没有出现混乱的情况。我们也就解决了多个线程同步的问题

    NSOperation、NSOperationQueue 常用属性和方法归纳

    NSOperation 常用属性和方法

    1. 取消操作方法
      • - (void)cancel; 可取消操作,实质是标记 isCancelled 状态
    2. 判断操作状态方法
      • - (BOOL)isFinished; 判断操作是否已经结束
      • - (BOOL)isCancelled; 判断操作是否已经标记为取消
      • - (BOOL)isExecuting; 判断操作是否正在在运行
      • - (BOOL)isReady; 判断操作是否处于准备就绪状态,这个值和操作的依赖关系相关
    3. 操作同步
      • - (void)waitUntilFinished; 阻塞当前线程,直到该操作结束。可用于线程执行顺序的同步
      • - (void)setCompletionBlock:(void (^)(void))block; 会在当前操作执行完毕时执行 completionBlock
      • - (void)addDependency:(NSOperation *)op; 添加依赖,使当前操作依赖于操作 op 的完成
      • - (void)removeDependency:(NSOperation *)op; 移除依赖,取消当前操作对操作 op 的依赖
      • @property (readonly, copy) NSArray *dependencies; 在当前操作开始执行之前完成执行的所有操作对象数组

    NSOperationQueue 常用属性和方法

    1. 取消/暂停/恢复操作
      • - (void)cancelAllOperations; 可以取消队列的所有操作
      • - (BOOL)isSuspended; 判断队列是否处于暂停状态。 YES 为暂停状态,NO 为恢复状态
      • - (void)setSuspended:(BOOL)b; 可设置操作的暂停和恢复,YES 代表暂停队列,NO 代表恢复队列
    2. 操作同步
      • - (void)waitUntilAllOperationsAreFinished; 阻塞当前线程,直到队列中的操作全部执行完毕
    3. 添加/获取操作
      • - (void)addOperationWithBlock:(void (^)(void))block; 向队列中添加一个 NSBlockOperation 类型操作对象
      • - (void)addOperations:(NSArray *)ops waitUntilFinished:(BOOL)wait; 向队列中添加操作数组,wait 标志是否阻塞当前线程直到所有操作结束
      • - (NSArray *)operations; 当前在队列中的操作数组(某个操作执行结束后会自动从这个数组清除)
      • - (NSUInteger)operationCount; 当前队列中的操作数
    4. 获取队列
      • + (id)currentQueue; 获取当前队列,如果当前线程不是在 NSOperationQueue 上运行则返回 nil
      • + (id)mainQueue; 获取主队列

    注意:

    1. 这里的暂停和取消(包括操作的取消和队列的取消)并不代表可以将当前的操作立即取消,而是当当前的操作执行完毕之后不再执行新的操作。
    2. 暂停和取消的区别就在于:暂停操作之后还可以恢复操作,继续向下执行;而取消操作之后,所有的操作就清空了,无法再接着执行剩下的操作。

    多线程的选择方案

    请添加图片描述
    注意: 如果使用NSThreadperformSelector:withObject:afterDelay:时需要添加到当前线程的runloop中,因为在内部会创建一个NSTimer

    GCD和NSOperation的比较

    • GCDNSOperation的关系如下:
      • GCD是面向底层的C语言的API
      • NSOperation是用GCD封装构建的,是GCD的高级抽象
    • GCDNSOperation的对比如下:
      1. GCD执行效率更高,而且由于队列中执行的是由block构成的任务,这是一个轻量级的数据结构——写起来更加方便
      2. GCD只支持FIFO的队列,而NSOpration可以设置最大并发数、设置优先级、添加依赖关系等调整执行顺序
      3. NSOpration甚至可以跨队列设置依赖关系,但是GCD只能通过设置串行队列,或者在队列内添加barrier任务才能控制执行顺序,较为复杂
      4. NSOperation支持KVO(面向对象)可以检测operation是否正在执行、是否结束、是否取消

    • 实际项目中,很多时候只会用到异步操作,不会有特别复杂的线程关系管理,所以苹果推崇的是优化完善、运行快速的GCD
    • 如果考虑异步操作之间的事务性、顺序性、依赖关系,比如多线程并发下载,GCD需要写更多的代码来实现,而NSOperation已经内建了这些支持
    • 不管是GCD还是NSOperation,我们接触的都是任务和队列,都没有直接接触到线程,事实上线程管理也的确不需要我们操心,系统对于线程的创建、调度管理和释放都做得很好;而NSThread需要我们自己去管理线程的生命周期,还要考虑线程同步、加锁问题,造成一些性能上的开销

    多线程的应用场景

    • 异步执行
      • 将耗时操作放在子线程中,使其不阻塞主线程
    • 刷新UI
      • 异步网络请求,请求完毕dispatch_get_main_queue()回到主线程刷新UI
      • 同一页面多个网络请求使用dispatch_group统一调度刷新UI
    • dispatch_once
      • 在单例中使用,一个类仅有一个实例且提供一个全局访问点
      • method-Swizzling使用保证方法只交换一次
    • dispatch_after将任务延迟加入队列
    • 栅栏函数可用作同步锁
    • dispatch_semaphore_t
      • 用作锁保证线程安全
      • 控制GCD的最大并发数
    • dispatch_source定时器替代误差较大的NSTimer
    • AFNetworking、SDWebImage等知名三方库中的NSOperation使用
    • . . . . . .

    自旋锁与优先级翻转

    内容学习自这篇博客:对iOS中自旋锁与优先级反转(Priority inversion)的理解

    优先级反转

    关于优先级反转,参考资料中《优先级反转那点事儿》讲的比较清晰。此处直接贴过来
    在这里插入图片描述

    • 线程A在一个比较低的优先级上工作, 假设是10吧。然后在时间点T1的时候,线程A锁定了一把互斥锁,并开始操作互斥数据。
    • 这时有个高优线级线程C(比如优先级20)在时间点T2被唤醒,它也也需要操作互斥数据。当它加锁互斥锁时,因为互斥锁在T1被线程A锁掉了,所以线程C放弃CPU进入阻塞状态,而线程A得以占据CPU,继续执行。
    • 事情到这一步还是正确的,虽然优先级10A线程看上去抢了优先级20C线程的时间,但因为程序逻辑,C确实需要退出CPU等完成互斥数据操作后,才能获得CPU
    • 但是,假设我们有个线程B在优先级15上,在T3时间点上醒了过来,因为他比当前执行的线程A优先级高,所以它会立即抢占CPU。而线程A被迫进入READY状态等待。
    • 一直到时间点T4,线程B放弃CPU,这时优先级10的线程A是唯一READY线程,它再次占据CPU继续执行,最后在T5解锁了互斥锁。
    • T5,线程A解锁的瞬间,线程C立即获取互斥锁,并在优先级20上等待CPU。因为它比线程A的优先级高,系统立刻调度线程C执行,而线程A再次进入READY状态。

    上面这个时序里,线程BT3T4占据CPU运行的行为,就是事实上的优先级反转。一个优先级15的线程B,通过压制优线级10的线程A,而事实上导致高优先级线程C无法正确得到CPU。这段时间是不可控的,因为线程B可以长时间占据CPU(即使轮转时间片到时,线程AB都处于可执行态,但是因为B的优先级高,它依然可以占据CPU),其结果就是高优先级线程C可能长时间无法得到 CPU

    优先级反转 vs 自旋锁

    请添加图片描述

    atomic和os_unfair_lock

    请添加图片描述
    iOS中的自旋锁OSSpinLock现已被废弃,官方推荐使用os_unfair_lock互斥锁。

    另外GCD中的信号量方法也由于不会记录持有它的线程信息,当发生优先级反转的时候,系统找不到优先级的线程,导致系统可能无法通过提高优先级解决优先级反转问题,故也不建议使用。

  • 相关阅读:
    nvm安装node npm没有被安装
    人口大数据解决方案
    JSTL标准标签库 EL表达式
    ARM汇编之乘法指令
    怎么看出 Java 的 Comparator是升序还是降序
    Spring Data中MongoDB文档中的唯一字段
    【JavaScript高级】05-JavaScript中with、eval语句及严格模式的使用
    鸿蒙(API 12 Beta2版)媒体开发【管理麦克风】
    java---IO流:字节流
    对家自动驾驶汽车出 Bug?马斯克幸灾乐祸:“哈哈!”
  • 原文地址:https://blog.csdn.net/m0_52192682/article/details/126103547